Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Environmental Science Regular Paper
Acrolein, an α,β-Unsaturated Carbonyl, Inhibits Both Growth and PSII Activity in the Cyanobacterium Synechocystis sp. PCC 6803
Ginga SHIMAKAWATatsuya IWAMOTOTomohito MABUCHIRyota SAITOHiroshi YAMAMOTOKatsumi AMAKOToshio SUGIMOTOAmane MAKINOChikahiro MIYAKE
Author information
JOURNAL FREE ACCESS
Supplementary material

2013 Volume 77 Issue 8 Pages 1655-1660

Details
Abstract

In this study, we sought to determine whether and how an α,β-unsaturated carbonyl, acrolein, can inhibit the growth of the cyanobacterium Synechocystis sp. PCC6803 (S. 6803). Treatment of S. 6803 with 200 µM acrolein for 3 d significantly and irreversibly inhibited its growth. To elucidate the inhibitory mechanism, we examined the effects of acrolein on photosynthesis. In contrast to dark conditions, the addition of acrolein to S. 6803 under conditions of illumination lowered the CO2-dependent O2 evolution rate (photosynthetic activity). Furthermore, treatment with acrolein lowered the activity reducing dimethyl benzoquinone in photosystem II (PSII). Acrolein also suppressed the reduction rate for the oxidized form of the reaction center chlorophyll of photosystem I (PSI), P700. These results indicate that acrolein inhibited PSII activity in thylakoid membranes. The addition of 200 µM acrolein to the illuminated S. 6803 cells gradually increased the steady-state level (Fs) of Chl fluorescence and decreased the quantum yield of PSII. These results suggested that acrolein damaged the acceptor side of PSII. On the other hand, acrolein did not inhibit respiration. From the above results, we gained insight into the metabolism of acrolein and its physiological effects in S. 6803.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2013 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top