Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
In Vitro Immunoregulatory Effects of Korean Mistletoe Lectin on Functional Activation of Monocytic and Macrophage-Like Cells
Ji Yeon LeeJoo Young KimYong Gyu LeeSe Eun ByeonByung Hun KimMan Hee RheeAlbert LeeMoosik KwonSungyoul HongJae Youl Cho
Author information
JOURNAL FREE ACCESS

2007 Volume 30 Issue 11 Pages 2043-2051

Details
Abstract

Korean mistletoe lectin (KML) is one of the major active components in Viscum album var. (coloratum), displaying various biological effects such as anti-tumor and anti-metastatic activities. Even though it has been shown to boost host immune defense mechanisms, the immunomodulatory effects of KML on specific immune responses mediated by macrophages have not been fully elucidated. Therefore, in this study, we aimed to demonstrate KML's regulatory roles on macrophage-mediated immune responses. KML clearly blocked lipopolysaccharide (LPS)-induced events [expression of interleukin (IL)-10, nitric oxide (NO) production and phagocytic uptake], and suppressed the normal expression levels of IL-10 (at 2 ng/ml) and tumor necrosis factor (TNF)-α (at 10 ng/ml). In contrast, (1) the expression of cytokine (TNF-α) and (2) the generation of reactive oxygen species (ROS) induced by LPS were significantly up-regulated with KML co-treatment. In addition, KML itself increased the mRNA levels of IL-3 and IL-23; phagocytic uptake; the surface levels of co-stimulatory molecules (CD80 and CD86), pattern recognition receptors (PRRs) [such as dectin-1 and toll like receptor (TLR)-2] and adhesion molecules [β1-integrins (CD29) and CD43]; and CD29-mediated cell adhesion events. Finally, according to co-treatment of D-galactose with KML under LPS-induced NO production conditions, KML inhibition seems to be mediated by binding to proteins with D-galactose. Therefore, these data suggest that KML may participate in regulating various macrophage-mediated innate and adaptive responses via binding to surface protein with D-galactose and that some of these may deserve in KML's therapeutic activities such as anti-tumor and anti-microbial effects.

Content from these authors
© 2007 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top