Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Berberine Exerts Neuroprotective Actions against in Vitro Ischemia-Induced Neuronal Cell Damage in Organotypic Hippocampal Slice Cultures: Involvement of B-Cell Lymphoma 2 Phosphorylation Suppression
Hu-Shan CuiKinzo MatsumotoYukihisa MurakamiHitomi HoriQi ZhaoRyosuke Obi
Author information
JOURNAL FREE ACCESS

2009 Volume 32 Issue 1 Pages 79-85

Details
Abstract

In this study we elucidated the effects of berberine, a major alkaloid component contained in medicinal herbs, such as Phellodendri Cortex and Coptidis Rhizoma, on ischemic neuronal damage in mouse organotypic hippocampal slice cultures (OHSCs) caused by oxygen and glucose deprivation (OGD) and N-methyl-D-aspartate (NMDA) -type glutamate receptor stimulation. Hippocampal slices obtained from 7-d-old ICR mice were cultured for 10 d before the experiments. Ischemia-related damage was induced by OGD (5, 15, 45 min) or NMDA (10 μM) treatment, and was evaluated by measuring propidium iodide (PI) uptake. Levels of apoptotic marker proteins, B-cell lymphoma 2 (Bcl-2) and phosphorylated-Bcl-2 (p-Bcl-2), in the OHSCs were measured as indices of biochemical neuronal cell damage by Western blotting. Berberine (5, 25 μM) or the NMDA antagonist MK-801 (25 μM) was added to the medium 30 min before OGD or NMDA treatment. OGD time-dependently increased PI uptake of the OHSCs. Both berberine (5, 25 μM) and MK-801 (25 μM) significantly inhibited PI uptake at 24 h after 45-min OGD treatment and PI uptake in OHSCs exposed to NMDA for 24 h. OGD treatment also significantly increased the level of p-Bcl-2 but not that of Bcl-2 or glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in OHSCs. Berberine (5—25 μM) significantly suppressed the OGD-induced increase of p-Bcl-2 level in OHSCs when tissue was exposed to the alkaloid prior to OGD or simultaneously with OGD. These findings suggest that berberine has protective effects against ischemic damage in mouse OHSCs and that the effects are at least partly mediated by suppression of Bcl-2 phosphorylation.

Content from these authors
© 2009 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top