Chemical and Pharmaceutical Bulletin
Online ISSN : 1347-5223
Print ISSN : 0009-2363
ISSN-L : 0009-2363
Regular Articles
Inhibition of Cytopathic Effect of Human Immunodeficiency Virus Type-1 by Various Phorbol Derivatives
Sahar El-MekkawyMeselhy Ragab MeselhyAtef Abdel-Monem Abdel-HafezNorio NakamuraMasao HattoriTakuya KawahataToru Otake
Author information
JOURNAL FREE ACCESS

2002 Volume 50 Issue 4 Pages 523-529

Details
Abstract

Forty-eight derivatives of phorbol (9) and isophorbol (14) were evaluated for their inhibition of human immunodeficiency virus (HIV)-1 induced cytopathic effects (CPE) on MT-4 cells, as well as their activation of protein kinase C (PKC), as indices of anti-HIV-1 and tumor promoting activities, respectively. Of these compounds, the most potent inhibition of CPE was observed in 12-O-tetradecanoylphorbol 13-acetate (8) and 12-O-acetylphorbol 13-decanoate (6). The former also showed the strongest PKC activation activity, while the latter showed no activity at 10 ng/ml. Both activities were generally observed in those phorbol derivatives with an A/B trans configuration, but not in the isophorbol derivatives with an A/B cis configuration. Acetylation of 20-OH in the phorbol derivatives significantly reduced the inhibition of CPE, as shown in 12-O-, 20-O-diacetylphorbol 13-decanoate (6a) (IC100=15.6 μg/ml) vs. compound 6 (IC100=0.0076 μg/ml), and 12-O-tetradecanoylphorbol 13,20-diacetate (8a) (IC100=15.6 μg/ml) vs. 12-O-tetradecanoylphorbol 13-acetate (8) (IC100=0.00048 μg/ml), except in the case of 12-O-decanoylphorbol 13-(2-methylbutyrate) (4) and phorbol 12,13-diacetate (9c). The reduction of a carbonyl group at C-3 abruptly reduced the inhibition of CPE, as observed in 3β-hydroxyphorbol 12,13,20-triacetate (9f) (IC100=500 μg/ml) vs. phorbol 12,13,20-triacetate (9d) (IC100=62.5 μg/ml). Although 8 was equipotent in the inhibition of CPE, and activation of PKC, both activities were abruptly decreased by the acetylation of 20-OH and methylation of 4-OH [as in 8a and 4-O-methyl-12-O-tetradecanoylphorbol 13,20-diacetate (8b), respectively]. On the other hand, its positional isomer (12-O-acetylphorbol 13-tetradecanoate (8c) showed neither activities. The removal of a long acyl group in 8 led to a substantial loss of both activities, as shown in phorbol 13-acetate (9b). Of the 12-O-acetyl-13-O-acylphorbol derivatives, the highest inhibition of CPE was observed in 6, which has a dodecanoyl residue at C-13. Both an increase and decrease in the number of fatty acid carbon chains resulted in significant reduction of the inhibition of CPE.

Content from these authors
© 2002 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top