The Japanese Journal of Pharmacology
Online ISSN : 1347-3506
Print ISSN : 0021-5198
ISSN-L : 0021-5198
Regular Papers
Alkalinization-Induced K+ Current of the Mouse Megakaryocyte
Makoto MurakamiNaofumi TokutomiYoshiko TokutomiKimio TomitaKatsuhide Nishi
Author information
JOURNAL FREE ACCESS

1999 Volume 79 Issue 3 Pages 343-350

Details
Abstract

We have recently found that mouse megakaryocytes responded to extracellular alkalinization to pH>8.0, generating a K+ current under voltage-clamped conditions with the whole cell recording mode of the patch-clamp technique. The purpose of this study was to physiologically and pharmacologically characterize the alkaline-dependent K+ conductance of the megakaryocyte membrane. The alkalinization-induced K+ current (IALK) did not seem to be Ca2+-dependent since IALK was allowed to be generated under intracellularly Ca2+-buffered conditions with 10 mM EGTA, which completely prevented the generation of caffeine-induced Ca2+-activated currents of mouse megakaryocytes; and no [Ca2+]i elevation was evoked by the alkalinization protocol in contrast to a significant increase in [Ca2+]i in response to caffeine when [Ca2+]i was measured with a fura 2 ratiometry. IALK was strongly suppressed with tetraethylammonium (TEA), 4-aminopyridine (4-AP) and streptomycin (SM), but was completely resistant to quinidine (QND). The values of IC50 for the suppression of IALK with TEA, 4-AP and SM were 5.6, 0.47 and 1.5 mM, respectively. Voltage-gated K+ currents (IK) of the same megakaryocyte preparation were weakly suppressed with TEA and 4-AP, while they were significantly suppressed with either SM or QND. These results suggest that mouse megakaryocytes possess K+ conductance that was activated by extracellular alkalinization and that probably differs from conventional K+ conductance in its pharmacological properties.

Content from these authors
© The Japanese Pharmacological Society 1999
Previous article Next article
feedback
Top