JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing
Online ISSN : 1347-538X
Print ISSN : 1344-7653
ISSN-L : 1344-7653
PAPERS
Thermal Error Modeling of a Machining Center Using Grey System Theory and Adaptive Network-Based Fuzzy Inference System
Kun-Chieh WANGPai-Chung TSENGKuo-Ming LIN
Author information
JOURNAL FREE ACCESS

2006 Volume 49 Issue 4 Pages 1179-1187

Details
Abstract

Thermal effect on machine tools is a well-recognized problem in an environment of increasing demand for product quality. The performance of a thermal error compensation system typically depends on the accuracy and robustness of the thermal error model. This work presents a novel thermal error model utilizing two mathematic schemes: the grey system theory and the adaptive network-based fuzzy inference system (ANFIS). First, the measured temperature and deformation results are analyzed via the grey system theory to obtain the influence ranking of temperature ascent on thermal drift of spindle. Then, using the highly ranked temperature ascents as inputs for the ANFIS and training these data by the hybrid learning rule, a thermal compensation model is constructed. The grey system theory effectively reduces the number of temperature sensors needed on a machine structure for prediction, and the ANFIS has the advantages of good accuracy and robustness. For testing the performance of proposed ANFIS model, a real-cutting operation test was conducted. Comparison results demonstrate that the modeling schemes of the ANFIS coupled with the grey system theory has good predictive ability.

Content from these authors
© 2006 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top