Microvascular Reviews and Communications
Online ISSN : 1880-5906
Print ISSN : 2188-1707
ISSN-L : 2188-1707
H2O2-induced Vasodilatation Compensates Diabetes-induced Microvascular Endothelial Dysfunction during Acute Coronary Occlusion in Canine Coronary Native Collateral Microvessels in Vivo
Toyotaka YadaHiroaki ShimokawaOsamu HiramatsuHiroshi NakamotoMasami GotoYasuo OgasawaraFumihiko Kajiya
Author information
JOURNAL FREE ACCESS

2014 Volume 7 Issue 1 Pages 39

Details
Abstract

Background: It has been previously demonstrated that endothelial Cu, Zn-SOD and caveolin-1 play crucial roles of hydrogen peroxide (H2O2) production as an endothelium-derived hyperpolarizing factor (EDHF) in mouse mesenteric arteries. We thus examined whether this mechanism is involved in the EDHF-mediated responses in diabetes mellitus (DM) during acute coronary occlusion.

Methods: Canine subepicardial coronary collateral small arteries (CSA>100µm) and arterioles (CA <100µm) were visually traced by an intravital microscope between left anterior descending artery (LAD) and left circumflex coronary artery (LCX) with an injection of indocyanine green. We examined bradykinin-induced vasodilatation of native coronary collaterals before and after myocardial ischemia by proximal LAD occlusion (90min) under the following conditions (n=6 each); (i) control and (ii) DM (alloxan, 1 week prior to study, IV) with cyclooxygenase blockade (ibuprofen, 12.5 mg/kg, IV) before the onset of the ischemia. Myocardial levels of Cu,Zn-SOD, caveolin-1 and H2O2 (Amplex Red) and plasma levels of 8-OHdG, as a marker of oxidative stress and tetrahydrobiopterin in the coronary sinus were measured by ELISA and high-performance liquid chromatography.

Results: Although the levels of Cu, Zn-SOD, tetrahydrobiopterin and caveolin-1 in the LAD area were comparable between the control and DM groups, caveolin-1 levels were greater in coronary microvessels than in coronary conduit arteries in the control group. Nitric oxide (NO)-mediated coronary vasodilatation of CSA by bradykinin significantly decreased in DM compared with control, and was restored by compensation of EDHF/H2O2 in CA with H2O2 production for the loss of NO. Oxidative stress (8-OHdG) was significantly increased in DM compared with control.

Conclusions: NO-mediated, endothelium-dependent vasodilatations of CSA during acute coronary occlusion are impaired in DM and are compensated by EDHF/H2O2 in dogs in vivo.

Content from these authors
© 2014 by Japanese Society for Microcirculation
Previous article Next article
feedback
Top