Okajimas Folia Anatomica Japonica
Online ISSN : 1881-1736
Print ISSN : 0030-154X
ISSN-L : 0030-154X
CONTENTS
Chemoarchitecture of glial fibrillary acidic protein (GFAP) and glutamine synthetase in the rat optic nerve: An immunohistochemical study
June KAWANO
Author information
JOURNAL FREE ACCESS

2015 Volume 92 Issue 1 Pages 11-30

Details
Abstract

An immunohistochemical analysis of the chemoarchitecture of glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) was conducted in the rat optic nerve. The optic nerve has been divided into 3 regions: the intraretinal, unmyelinated, and myelinated regions. However, it currently remains unclear whether the chemoarchitecture of GFAP and GS is homogeneously organized, especially in the myelinated region. The intraretinal region was divided into intraretinal regions 1 (i1) and 2 (i2). GFAP immunoreactivity was very strong in the i2 and unmyelinated regions, and strong in the i1 region. GS immunoreactivity was moderate in the i1 and i2 regions, and weak in the unmyelinated region. The myelinated region was separated into myelinated regions 1 (m1) and 2 (m2). In the m1 region, GFAP immunoreactivity was strong and GS immunoreactivity was moderate; however, GFAP immunoreactivity was moderate and GS immunoreactivity was weak in the m2 region. Thus, the chemoarchitecture was heterogeneously organized in the myelinated region, with the i1, i2 and m1 regions being the main GS distribution sites. Moreover, most GS-immunoreactive glial cells were oligodendrocytes in the myelinated region. Since GS is a key enzyme in glutamate metabolism, these results may facilitate future investigations for a clearer understanding of glutamate metabolism.

Content from these authors
© 2015 Editorial Board of Okajimas Folia Anatomica Japonica
Previous article Next article
feedback
Top