IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Current issue
Displaying 1-4 of 4 articles from this issue
Regular Section
  • Kai IKUTA, Jinya NAKAMURA, Moriya NAKAMURA
    Article type: PAPER
    Subject area: Fiber-Optic Transmission for Communications
    2024 Volume E107.B Issue 4 Pages 349-356
    Published: April 01, 2024
    Released on J-STAGE: April 01, 2024
    JOURNAL RESTRICTED ACCESS

    In this paper, we investigated the overfitting characteristics of nonlinear equalizers based on an artificial neural network (ANN) and the Volterra series transfer function (VSTF), which were designed to compensate for optical nonlinear waveform distortion in optical fiber communication systems. Linear waveform distortion caused by, e.g., chromatic dispersion (CD) is commonly compensated by linear equalizers using digital signal processing (DSP) in digital coherent receivers. However, mitigation of nonlinear waveform distortion is considered to be one of the next important issues. An ANN-based nonlinear equalizer is one possible candidate for solving this problem. However, the risk of overfitting of ANNs is one obstacle in using the technology in practical applications. We evaluated and compared the overfitting of ANN- and conventional VSTF-based nonlinear equalizers used to compensate for optical nonlinear distortion. The equalizers were trained on repeated random bit sequences (RRBSs), while varying the length of the bit sequences. When the number of hidden-layer units of the ANN was as large as 100 or 1000, the overfitting characteristics were comparable to those of the VSTF. However, when the number of hidden-layer units was 10, which is usually enough to compensate for optical nonlinear distortion, the overfitting was weaker than that of the VSTF. Furthermore, we confirmed that even commonly used finite impulse response (FIR) filters showed overfitting to the RRBS when the length of the RRBS was equal to or shorter than the length of the tapped delay line of the filters. Conversely, when the RRBS used for the training was sufficiently longer than the tapped delay line, the overfitting could be suppressed, even when using an ANN-based nonlinear equalizer with 10 hidden-layer units.

    Download PDF (1322K)
  • Varuliantor DEAR, Annis SIRADJ MARDIANI, Nandang DEDI, Prayitno ABADI, ...
    Article type: PAPER
    Subject area: Antennas and Propagation
    2024 Volume E107.B Issue 4 Pages 357-367
    Published: April 01, 2024
    Released on J-STAGE: April 01, 2024
    JOURNAL RESTRICTED ACCESS

    Low capacity and reliability are the challenges in the development of ionosphere communication channel systems. To overcome this problem, one promising and state-of-the-art method is applying a multi-carrier modulation technique. Currently, the use of multi-carrier modulation technique is using a single transmission frequency with a bandwidth is no more than 24kHz in real-world implementation. However, based on the range of the minimum and maximum ionospheric plasma frequency values, which could be in the MHz range, the use of these values as the main bandwidth in multi-carrier modulation techniques can optimize the use of available channel capacity. In this paper, we propose a multi-carrier modulation technique in combination with a model variation of Lowest Usable Frequency (LUF) and Maximum Usable Frequency (MUF) values as the main bandwidth to optimize the use of available channel capacity while also maintaining its reliability by following the variation of the ionosphere plasma frequency. To analyze its capacity and reliability, we performed a numeric simulation using a LUF-MUF model based on Long Short Term-Memory (LSTM) and Advanced Stand Alone Prediction System (ASAPS) in Near Vertical Incidence Skywave (NVIS) propagation mode with the assumption of perfect synchronization between transmitter and receiver with no Doppler and no time offsets. The results show the achievement of the ergodic channel capacity varies for every hour of the day, with values in the range of 10Mbps and 100Mbps with 0 to 20dB SNR. Meanwhile, the reliability of the system is in the range of 8% to 100% for every hour of one day based on two different Mode Reliability calculation scenarios. The results also show that channel capacity and system reliability optimization are determined by the accuracy of the LUF-MUF model.

    Download PDF (5190K)
  • Zikang CHEN, Wenping GE, Henghai FEI, Haipeng ZHAO, Bowen LI
    Article type: PAPER
    Subject area: Wireless Communication Technologies
    2024 Volume E107.B Issue 4 Pages 368-376
    Published: April 01, 2024
    Released on J-STAGE: April 01, 2024
    JOURNAL RESTRICTED ACCESS

    The combination of multiple-input multiple-output (MIMO) technology and sparse code multiple access (SCMA) can significantly enhance the spectral efficiency of future wireless communication networks. However, the receiver design for downlink MIMO-SCMA systems faces challenges in developing multi-user detection (MUD) schemes that achieve both low latency and low bit error rate (BER). The separated detection scheme in the MIMO-SCMA system involves performing MIMO detection first to obtain estimated signals, followed by SCMA decoding. We propose an enhanced separated detection scheme based on lightweight graph neural networks (GNNs). In this scheme, we raise the concept of coordinate point relay and full-category training, which allow for the substitution of the conventional message passing algorithm (MPA) in SCMA decoding with image classification techniques based on deep learning (DL). The features of the images used for training encompass crucial information such as the amplitude and phase of estimated signals, as well as channel characteristics they have encountered. Furthermore, various types of images demonstrate distinct directional trends, contributing additional features that enhance the precision of classification by GNNs. Simulation results demonstrate that the enhanced separated detection scheme outperforms existing separated and joint detection schemes in terms of computational complexity, while having a better BER performance than the joint detection schemes at high Eb/N0 (energy per bit to noise power spectral density ratio) values.

    Download PDF (1564K)
  • Jichen BIAN, Min ZHENG, Hong LIU, Jiahui MAO, Hui LI, Chong TAN
    Article type: PAPER
    Subject area: Sensing
    2024 Volume E107.B Issue 4 Pages 377-386
    Published: April 01, 2024
    Released on J-STAGE: April 01, 2024
    JOURNAL RESTRICTED ACCESS

    Wi-Fi-based person identification (PI) tasks are performed by analyzing the fluctuating characteristics of the Channel State Information (CSI) data to determine whether the person's identity is legitimate. This technology can be used for intrusion detection and keyless access to restricted areas. However, the related research rarely considers the restricted computing resources and the complexity of real-world environments, resulting in lacking practicality in some scenarios, such as intrusion detection tasks in remote substations without public network coverage. In this paper, we propose a novel neural network model named SimpleViTFi, a lightweight classification model based on Vision Transformer (ViT), which adds a downsampling mechanism, a distinctive patch embedding method and learnable positional embedding to the cropped ViT architecture. We employ the latest IEEE 802.11ac 80MHz CSI dataset provided by [1]. The CSI matrix is abstracted into a special “image” after pre-processing and fed into the trained SimpleViTFi for classification. The experimental results demonstrate that the proposed SimpleViTFi has lower computational resource overhead and better accuracy than traditional classification models, reflecting the robustness on LOS or NLOS CSI data generated by different Tx-Rx devices and acquired by different monitors.

    Download PDF (2963K)
feedback
Top