Body color polymorphism in nymphs and adults of a katydid, Conocephalus maculatus (Orthoptera: Tettigoniidae)

Ken-ichi Oda and Minoru Ishii
Entomological Laboratory, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Sakai, Osaka 599–8531, Japan
(Received 18 October 2000; Accepted 9 March 2001)

Abstract
We observed color changes of the katydid, Conocephalus maculatus, from the hatchling to the adult stage under various rearing conditions using two populations in southern Osaka Prefecture. C. maculatus showed color polymorphism in the nymphal stage as well as in the adult stage: Although all the hatchlings were green irrespective of populations or conditions, the rate of green morph (G rate) decreased to 40–80% in the adult stage. Moreover, about 10% of individuals which had once turned brown returned to the green morph after one of the succeeding moults. The G rate of progenies between a green female and a green male tended to be higher than that between a brown female and a brown male throughout the nymphal stage, while environmental factors such as temperature, humidity and background color had no significant effect on nymphal color morph. The present results show that color-morph determination is controlled mainly by genetic factors and little affected by environmental factors in nymphs and adults of C. maculatus.

Key words: Conocephalus maculatus, color polymorphism, nymphal color change, reversible color change

INTRODUCTION

Green-brown polymorphism is common in orthopterans, although the factors that regulate body coloration differ from species to species (Okay, 1953; Rowell, 1971). In acridoid grasshoppers, much information has accumulated about the control of color polymorphism: Some grasshoppers change body coloration in response to environmental factors such as temperature, as in Oedaleus senegalensis (Colvin and Cooter, 1995), humidity and background color under low density, as in Locusta migratoria (Pener, 1991) and background color, as in Gastrimargus africanus (Rowell, 1970). The effects of endocrine factors on color polymorphism have been elucidated in Locusta migratoria (Tanaka and Pener, 1994; Tanaka, 2000a, b, c). Genetical control of body-color polymorphism, such as a striped or mottled wing, has been reviewed in Chortoicetes terminifera (Byrne, 1967) and Chorthippus brunneus (Gill, 1981). In Schistocerca gregaria, parental conditions such as a gregarious or solitary phase affected the coloration of nymphs (Islam et al., 1994).

On the other hand, studies on color polymorphism in the suborder Ensifera are quite limited. Although high population density induces dark coloration like the phase variation in some katydids (Owen, 1965; Robinson and Hartley, 1978; Ando and Hartley, 1982), the mechanism of color polymorphism in low population density is still unclear.

In the katydid, Conocephalus maculatus, the adult shows green-brown color polymorphism (Oda and Ishii, 1998). Conocephalus species including C. maculatus are predacious as well as herbivorous. They are known as insects of economic significance, being predators of both pineapple pests in the Pacific region (Pitkin, 1980) and rice pests in Malaysia (Ito et al., 1995). Although C. maculatus may be a harmful insect in agro-ecosystems of Japan (Ando, 1993), it serves as a predator of rice pests, as well (Nosato, 1983). It is of value to study color polymorphism in predacious and herbivorous orthopterans.

In a previous study (Oda and Ishii, 1998), we showed that the adult green-brown polymorphism in C. maculatus is partly controlled by genetic factors, and that environmental factors such as temperature, photoperiod, background color and humidity do not affect the rate of each morph. However, the details of the color change in the nymphal stage still remain unclear.

Thus, we observed the body color change of C. maculatus from the hatchling to the adult stage...
under different rearing conditions using two populations to elucidate the factors affecting color polymorphism in nymphs and adults.

MATERIALS AND METHODS

We selected two populations of *C. maculatus* derived from Osaka Prefecture University (OPU) in Sakai City and Murodo-cho (MRD) in Izumi City in southern Osaka Prefecture and compared color morph frequencies between them. We reared the F1 hybrids of parent pairs of different color morphs under different temperature, humidity and background color conditions. We recorded the numbers of each color morph and dead individuals in each stage. Insect rearing, color morph recording and the combination of parent color morphs were done according to the methods described in Oda and Ishii (1998). Hatchlings were reared individually in 200- or 500-ml clear plastic cups. A lump of dog food, “Gaines Hearty” (Ajinomoto General Foods Co., Ltd.), was provided daily as the diet, and a sheet of soft paper was provided as an anchor for moulting. The inside of the cups was kept moist by spraying with water except in the low-humidity regime.

RESULTS AND DISCUSSION

General features of nymphal color change

All hatchlings of the two populations were green irrespective of the parent color morphs (Fig. 1). However, 20–70% of them turned yellow or yellowish-brown (referred to as “brown morph” below) after the 2nd stadium, and the rate of green morph (G rate) decreased to 40–80% in the adult stage. The G rates were always higher throughout nymphal development in the F1 progenies G♀×G♂ than in those B♀×B♂, and the difference was significant at each stage from the 3rd stadium to the adult stage in the MRD population (by χ^2-test, $p<0.01$, df=1), and at the final stadium and the adult stage in the OPU population ($p<0.01$, df=1). The results show that the body coloration of nymphs is strongly influenced by genetic factors like that of adults (Oda and Ishii, 1998).

It should be noted that about 10% of individuals which had once turned brown returned to the green morph after one of the succeeding moults (Fig. 2). This green-brown-green (GBG) type color change occurred in both populations, and the change from brown to green was frequent in the last and penultimate stadia (see Fig. 1). Although the adult G rates in G♀×G♂ were significantly higher than those of other parent combinations in color in both populations (OPU: $\chi^2=12.03$, $p<0.01$, df=1; MRD: $\chi^2=8.94$, $p<0.01$, df=1), the rates of GBG type (GBG rate) in G♀×G♂ did not differ significantly from those in other combinations in the two populations (OPU: $p=0.308$, df=1; MRD: $p=0.533$, df=1 by Fisher’s exact probability test). Thus the GBG rate seemed to be independent of the combination of parent color morph. Moreover, the GBG
rates did not differ significantly between populations ($\chi^2=0.379$, $p>0.05$, df=1). Further investigation should be done to determine the biological significance of this reversible color change.

Influence of environmental factors

The survival rate varied under different conditions such as temperature and humidity in *C. maculatus* (Fig. 3). All nymphs died before the 4th stadium at a low temperature of 15°C, and a high temperature of 30°C caused high mortality during the early nymphal stage. Low humidity also decreased the survival rate in all nymphal stages, and the rates of adult emergence differed significantly among the 3 humidity conditions ($\chi^2=7.054$, $p<0.05$, df=2).

On the other hand, environmental factors such as temperature, humidity and background color had no significant effect on the G rate in nymphs or adults (Fig. 4). No significant difference was observed in the adult G rate among the 3 humidity conditions (Fig. 4b: $\chi^2=1.489$, $p>0.05$, df=2).

Characteristics of nymphal color change in *C. maculatus*

The nymphal color change pattern in *C. maculatus* may be characterized by three features: genetical control of the color morph, and late and reversible color changes. As described in Introduction, genetical and environmental effects on the color morph have been well studied in grasshoppers. Genetical color polymorphism has been reported in some katydids (Hancock, 1916; Rowell, 1971), however, environmental effects on the color morph are unknown in this family. As far as we know, this is the first report of reversible color change in grasshoppers and katydids. Further studies on color-morph determination in *C. maculatus* would contribute to a better understanding of the significance of color polymorphism in Orthoptera.

ACKNOWLEDGEMENTS

We would like to thank Dr. H. Tanaka of Osaka Prefectural Agricultural and Forestry Research Center for his helpful comments and discussion. Thanks are also due to Dr. T. Hirawatari, Mr. N. Hirai and other members of the Entomological Laboratory, Osaka Prefecture University for their encouragement and advice.

REFERENCES

Byrne, O. W. (1967) Polymorphism in the Australian Acridi-
dae. I. Inheritance of colour patterns in the plague locust,
Colvin, J. and R. J. Cooter (1995) Diapause induction and col-
oration in the Senegalese grasshopper, *Oedaleus sene-
Gill, P. (1981) The genetics of colour-patterns in the grasshop-
ner *Chorthippus brunneus*. Biol. J. Linn. Soc. 16: 243–
259.
Hancock, J. L. (1916) Pink katydids and the inheritance of
Islam, M. S., P. Roessingh, S. J. Simpson and A. R. McCaffery
(1994) Parental effects on the behaviour and colouration
of nymphs of the desert locust *Schistocerca gregaria*. J.
longipennis* (de Haan) (Orthoptera: Tettigoniidae): a sus-
pected egg-predator of the rice bug in the Muda area,
Nosato, K. (1983) Natural enemies of the rice stem borer,
Chilo suppressalis Walker (Lepidoptera: Pyralidae), in
Oda, K. and M. Ishii (1998) Factors affecting adult color poly-
morphism in the meadow grasshopper, *Conocephalus
Zool.* 33: 455–460.
Okay, S. (1953) Formation of green pigment and colour
Owen, D. F. (1965) Swarming and polymorphism in the
African edible grasshopper *Homorocoryphus nitidulus
61.
Pitkin, L. M. (1980) A revision of the Pacific species of *Cono-
Robinson, D. J. and J. C. Hartley (1978) Laboratory studies of
a tettigoniid (Insecta: Orthoptera) *Raspalia differens
in an acridid, *Gastrimargus africanus* (Saussure). *Anti-
Tanaka, S. (2000a) Induction of darkening by corazonins in
several species of Orthoptera and their possible presence
Tanaka, S. (2000b) The role of [His3]-corazonin in the control
of body-color polymorphism in the migratory locust, *Locu-
stus migratoria* (Orthoptera: Acrididae). *J. Insect Phys-
iol.* 46: 1169–1176.
Tanaka, S. (2000c) Hormonal control of body-color polymor-
phism in *Locusta migratoria*: interaction between [His3]-
coronisin and juvenile hormone. *J. Insect Physiol.* 46:
1535–1544.
the dark pigmentation in color polymorphism of the mi-
gatory locust, *Locusta migratoria*. *J. Insect Physiol.* 40:
997–1005.