Diapause Potential in Tropical Papilionids (Lepidoptera: Papilionidae)1,2,3

Minoru Ishii

Entomological Laboratory, College of Agriculture,
University of Osaka Prefecture,
Sakai, Osaka 591, Japan

(Received July 10, 1986)

It is an intriguing question whether or not tropical insects have an ability to enter diapause in response to environmental factor(s). Recently, the author obtained evidence for diapause potential in tropical papilionids at Sandakan in Sabah, Malaysia.

Females of papilionids, Papilio demoleus libanius Fruehstorfer, P. memnon memnon L. and P. polytes theseus Cramer were captured near the Forest Research Centre at Sepilok, in the suburbs of Sandakan (5.5°N) in mid July, 1983. They were kept in small cages (about 40 cm3) with fresh sprays of citrus tree for oviposition and fed on a 10% solution of sucrose. Eggs were put in 200 ml transparent plastic cups under quasi-natural laboratory conditions. Larvae were divided into 2 (in memnon and polytes) or 5 (in demoleus) groups, and reared in plastic cups under different photoperiodic conditions either in an air-conditioned laboratory at 25℃ or in portable electric refrigerators at 20℃ (see Table 1). At 25℃, both larvae and pupae were on a table illuminated by fluorescent lamps and/or the light through the window in photophases, and put in light-tight boxes in scotophases. At 20℃, photoperiods were manually controlled using a small lamp in the refrigerator. Fresh leaves of the orange tree, Citrus sp. were daily given as larval food.

Larval stage. Larval development in the three Sabahan papilionids was not affected by photoperiod (Table 1). In demoleus the mean larval stages under different photoperiods were not significantly different \((P>0.05, t\text{-ttest})\). The mean larval stage in 20℃-10L-14D was 90 days longer than that in 25℃-10L-14D. In both polytes and memnon also, the mean larval stage under 10L-14D did not differ from that under 14L-10D \((P>0.05)\). These results suggest that photoperiod does not influence the larval development in these papilionids and that, in demoleus, the larval growth was not particularly retarded under a short day combined with a low temperature of 20℃.

Pupal stage. Pupal development in these papilionids was not directly controlled by photoperiod (Table 2). In demoleus the mean pupal stages under 14-, 13-, 12-, and 10-hr photoperiods at 25℃ were between 12.1 and 12.4 days with no

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Conditions & demoleus & polytes & memnon \\
\hline
25℃ 14L-10D & 19.8±1.1 & 21.7±1.3 & 23.2±1.5 \\
\quad \(N=10\) & \(N=7\) & \(N=6\) \\
\hline
13L-11D & 19.9±0.6 & — & — \\
\quad \(N=8\) & & & \\
\hline
12L-12D & 19.5±1.2 & — & — \\
\quad \(N=13\) & & & \\
\hline
10L-14D & 19.5±1.7 & 22.1±0.6 & 24.6±1.4 \\
\quad \(N=14\) & \(N=8\) & \(N=7\) \\
\hline
20℃ 10L-14D & 28.7±0.6 & — & — \\
\quad \(N=3\) & & & \\
\hline
\end{tabular}
\caption{Larval stages (mean±S.D. days) of the three Sabahan papilionids under different temperature and photoperiodic conditions}
\end{table}

2 FRC Publication.
3 This work was supported by a Grant-in-Aid for Scientific Research (Overseas Scientific Survey) from the Ministry of Education, Science and Culture, Japan (No. 58041038 (1983) and No. 59043034 (1984)).
Table 2. Pupal stages (mean ± S.D. days) of the three Sabahan papilionids under different temperature and photoperiodic conditions

<table>
<thead>
<tr>
<th>Conditions</th>
<th>demoleus</th>
<th>polytes</th>
<th>mermion</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C 14L−10D</td>
<td>12.4 ± 0.5</td>
<td>12.7 ± 0.6</td>
<td>15.0 ± 1.2</td>
</tr>
<tr>
<td>(N=9)</td>
<td>(N=3)</td>
<td>(N=4)</td>
<td></td>
</tr>
<tr>
<td>13L−11D</td>
<td>12.3 ± 0.6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(N=3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12L−12D</td>
<td>12.1 ± 0.7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(N=10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10L−14D</td>
<td>12.2 ± 0.8</td>
<td>12.1 ± 0.7</td>
<td>14.5 ± 0.8</td>
</tr>
<tr>
<td>(N=12)</td>
<td>(N=7)</td>
<td>(N=6)</td>
<td></td>
</tr>
<tr>
<td>20°C 10L−14D</td>
<td>120.0 ± 22.6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(N=2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

significant differences (P > 0.05). In polytes and mermion the mean pupal stage under a long day (14 hr) was not statistically different from that under a short day (10 hr) (P > 0.05).

The duration of pupal period at 25°C is thus not influenced by either larval or pupal photoperiod. However, two pupae of demoleus reared in 20°C−10L−14D as larvae and pupae persisted for 104 and 136 days, respectively. These extended stages could be explained not by non-diapause development but by induction of diapause. Temperate papilionids enter pupal diapause in response to a larval short day (e.g., Oliver, 1969; Hidaka and Hirai, 1970; Ichinosé, 1974; Ishii, 1977), and it is of evolutionary interest that a papilionid near the equator has the ability of diapause at the same stage.

In papilionids of Okinawa (Japan) and Philippines, including demoleus, mermion and polytes, the larval short day induces the pupal diapause, though at a low rate, under a moderate temperature (Ae, 1978; Ichinosé and Negishii, 1979). Sandakan is located quite near the equator so that the variation of daylength is less than 40 min with the shortest day of about 12.5 hr (including civil twilights). Seasonal change in daylength may not serve as a cue for diapause near the equator (Denlinger, 1986). In Sandakan, on the other hand, the temperature may decline at night or on rainy days though the mean monthly temperature is above 26°C throughout the year. The moderate rearing temperature (20°C) may be responsible for diapause in the two Sabahan pupae of demoleus.

The author is deeply indebted to Dr. T. Hidaka of Kyoto University for the opportunity of this study and to Mr. K. M. Masta and Mr. L. T. Chm of the Forest Department of Sabah, and Mr. R. Thay of the Forest Research Centre for their kind support. Thanks are also due to Mr. K. Abe of Kyoto University who kindly recorded dates of adult emergence after the author had left Sandakan.

REFERENCES