which could serve as useful markers for further investigation into evolution of polyandry in the genus *Apis*.

ACKNOWLEDGEMENTS

We wish to thank Messrs: A. Inoue, H. Kamiya, I. Sakei, T. Ochi, K. Ohira, S. Niwa, H. Sato, S. Fujimura for sample collection. We also thank Dr. K. Hamaguchi of Nagoya University, for her helpful explanation of the nonradioactive PCR technique. We are grateful to Prof. M. Hyakumachi and Prof. K. Kawai of Gifu University, for the provision of the PCR Thermal Cycler and spectrophotometer. We thank also two anonymous reviewers for their comments on the paper.

REFERENCES

Species of the Genus *Stethocorus* of Japan (Heteroptera, Miridae): Predaceous Deraeocorine Plant Bugs Associated with Lace Bugs (Tingidae)\(^1\)

Tomohide Yasunaga, Mikio Takai\(^2\) and Yukinobu Nakatani\(^3\)

Biological Laboratory, Hokkaido University of Education, Sapporo 002, Japan

\(^2\) Entomology Section, Kochi Agricultural Research Center, Nankoku, Kochi 783, Japan

\(^3\) Entomological Laboratory, College of Agriculture, University of Osaka Prefecture, Sakai, Osaka 593, Japan

(Received 10 July 1996)

(Accepted 23 August 1996)

Key words: Heteroptera, Miridae, Stethocorus, new records, *Stephanitis tingida*, Japan

Species of the deraeocorine genus *Stethocorus* are well known predators preferably associated with lace bugs belonging to the family Tingidae. Although Linnavuori (1995) revised *Stethocorus* and recognized 10 species in the Old World, only a single species, *S. japonicus* Schumacher, has been reported from Japan.

Recently, we obtained several specimens of the genus from Ishigaki and Iriomote Islands of the Ryukyu, southern Japan. Upon examination, we found that only one specimen was *S. japonicus*, and the remainder of the material was identical with *S. praefectus* (DISTANT), originally described from India. Previously, *S. praefectus* has been reported as a predator of *Stephanitis typica* (DISTANT), whereas the present record from Ishigaki Island indicates that *Stethocorus praefectus* is associated with *Stephanitis subfasciata* Horváth on the tingid host plant, *Hernandia nymphaefolia* (Hernandiaceae).

In this paper we report *Stethocorus praefectus* from Japan for the first time, and *S. japonicus* as new to Iriomote Island, with new host records. A brief note on biology and taxonomy of each species is also given.

Fig. 1. A female of *Stethocosmus praefectus* (A), and an adult (B) and colony of nymphs (C) of *Stephanitis subfasciata* on leaves of *Hernandia nymphaefolia*.

Genus Stethocosmus Flor

Species included in this genus, without exception, exhibit specialized features within the Miridae (Fig. 1A). The unique dorsal habitus is considered to be mimic of tindig (e.g., strongly projected scutellum, reticular markings on the hemelytra; compare Fig. 1A with B and C). Since at least the Japanese species of *Stethocosmus* are usually associated with tindig colonies (Fig. 1C), such cryptic mimicry may afford protection against natural enemies.

Stethocosmus praefectus (Distant)

(Figs. 1A; 2A, C and E)

Distribution. Japan (the Ryukyus: Ishigaki and Iriomote Islands), India, Sri Lanka, Taiwan. This species now appears to be widely distributed over the Oriental Region.

Note. *Stethocosmus praefectus* is similar in general appearance to *S. japonicus*, from which it is easily distinguished by the smaller body, anteriorly projected eyes
Fig. 2. Stethoconus spp. of Japan. A, C and E, S. praefectus; B, D and F, S. japonicus. A, B: female head in dorsal view; C: head, pronotum and scutellum in left lateral view; E, F: left forewing. Scale bars: 0.5 mm.

(Fig. 2A), prominently elevated scutellum (C), and generally darker markings on the forewing (F). Stethoconus japonicus has the usually larger body, wider head (Fig. 2B), denser dorsal vestiture, less projected scutellum (D), and paler coloration on the apical forewing (F).

In India Stethoconus praefectus was reported as a major predator of the coconut palm lace bug, Stephanitis typica (Henry et al., 1986), a known pest of coconut, ginger, banana, etc. (Takeya, 1952). In Ishigaki Island Stethoconus praefectus is found together with Stephanitis subfuscata Horváth, on its host plant, Hernandia nymphaefolia (Hernandiaceae), growing near the coast. The present report on Stethoconus praefectus represents the northernmost distribution for this species as well as a new host record.

Stethoconus japonicus SCHUMACHER
(Fig. 2B, D and F)
Stethoconus japonicus SCHUMACHER, 1917, Sitzungs.
Gesell. Naturf. Freunde Berlin, 6: 344; Carvalho,

Distribution. Japan (Honshu, Kyushu, Irionote Is. = new record), Russian Far East (S. Primorskij Prov.), E. China, N. America. The progenitors of the New World populations are considered to have been introduced with shipments of ornamental azalea nursery stock from Japan (Wheeler and Henry, 1992).

Note. A single specimen, which was collected from Irionote Island and represents the new distribution for this species, is similar in size to praefectus, but we consider it conspecific with japonicus, based on the identical male genital structure.

Stethoconus japonicus is known to be an effective predator of economically damaging tingids, such as the azalea lace bug, Stephanitis pyroidea (Scott), and S. nashi Esaki et Takeya on pears (Esaki, 1932; Henry et al., 1986; Kerzhner, 1988; Nawa, 1910). In North America, Stethoconus japonicus was observed to be a suitable candidate for biological control of Stephanitis lace bugs (Neal et al., 1991; Neal and Haldemann, 1992). This plant bug is common on the ornamental azaleas in Japan. According to Dr. Tomokuni (pers. commun.), Stethoconus japonicus was also found together with Stephanitis takeyai Drake et Maa on Paris japonica (Ericaceae) in Fukushima Prefecture (= new host record).

ACKNOWLEDGEMENTS

We especially thank Dr. S. Miyamoto (Fukuoka
Relatively Larger Eggs Produced by Smaller Females of *Monochamus alternatus* (Coleoptera: Cerambycidae)

Katsumi Togashi, Yutaka Akita, Isao Nakane, Yasuyuki Shibata and Isamu Nakai

Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739, Japan
Tokaiyama Forestry Experiment Station, Kyoto University, Tokaiyama, Yamaguchi 745, Japan

(Received 7 August 1996)
(Received 7 November 1996)

Key words: Cerambycidae, egg size, maternal size, *Monochamus alternatus*

Monochamus alternatus Hope (Coleoptera: Cerambycidae) adults are the vector of the pine wood nematode, *Bursaphelenchus xylophilus* (Steiner et Bührer) Nickle, the causal agent of pine wilt disease (Mamiya and Enda, 1972; Morimoto and Iwasaki, 1972). After the maturation feeding, adult females lay eggs singly under the bark of recently killed *Pinus densiflora* Sieb. et Zucc. and *P. thunbergii* Parl. trees in Japan (e.g., Togashi and Magira, 1981). At high densities, the larvae kill each other under the bark (e.g., Togashi, 1986, 1990). An experiment has shown that the winners are larger than the losers (Anbrutsu and Togashi, unpublished data). This suggests that the initial size of progeny is significant to early survival. Since adult females exhibit a large variation in body size (Ochi and Katagiri, 1974), the size of eggs deposited by different-sized females is of great interest. We examined the relationship between maternal size and the relative size of eggs deposited by females.

MATERIALS AND METHODS

A total of 30 *P. densiflora* trees killed by pine wilt disease were felled and cut into logs in a man-made stand in Tokuyama City, Yamaguchi Prefecture, and