Our recent cytochemical investigation of oxidative metabolism in human polymorphonuclear leukocytes (PMN) has demonstrated hydrogen peroxide \((H_2O_2)\) production in phagocytosis and in the stimulation with several membrane activators \((16, 17)\). The \(H_2O_2\) production site was on the plasma membrane and contacted with particles and on the phagosome membrane during phagocytosis \((16)\). The \(H_2O_2\) production mechanism is shown by respiratory burst, which is caused by stimulated oxygen consumption, and by the increase in the NAD(P)H oxidation producing superoxide anions \((O_2^-)\) \((5)\). The \(O_2^-\) anions are converted into \(H_2O_2\) spontaneously by dismutation \((2)\) or with superoxide dismutase \((11)\). By use of the cerium perhydroxide formation of \(H_2O_2\) with trivalent cerous ions is demonstrated under an electron microscope \((3, 15)\).

As macrophages are also active in the phagocytosis that accompanies \(H_2O_2\) production \((9)\) we tried to demonstrate \(H_2O_2\) production in these cells. Cloned mouse macrophages Mm-1 line, a gift of Dr. Y. Ichikawa of the Department of Cytochemistry, Chest Disease Research Institute, Kyoto University, Kyoto, were cultured in monolayer as reported previously \((7, 8)\), harvested 3 days after inoculation and used. Cells were mixed with IgG-coated polystyrene particles at the ratio of 20 particles per cell \((16)\). The mixture in HBSS with glucose was kept at \(37^\circ C\) under an atmosphere of 5% CO\(_2\) in air for 10 min to allow phagocytosis. Afterward, cells were washed in a cold HBSS and then incubated in a medium consisting of 1.0 mM CeCl\(_3\) and 10 mM NaN\(_3\) in 0.1 M tris-maleate buffer, pH 7.5, with 7% sucrose at \(37^\circ C\) for 15 min \((16)\). NADH and NADPH were not used here as a substrate since they can be supplied endogenously. NAD(P)H does not go through the intact plasma membrane to reach the cytosolic side of the membrane where the NAD(P)H electron accepting site of NAD(P)H oxidase is believed to lie, whereas the \(H_2O_2\) release site appears to be ectocellular \((6, 19)\). Incubated cells were fixed with 2% glutaraldehyde and 1% osmium tetroxide. Ultrathin sections embedded in Spurr’s epoxy resin were observed under a JEM-100C or 100CX electron microscope without stain.

The shape of the macrophages in suspension was oval, and the plasma membrane was almost spherical with a few blebs and protrusions. Several particles were randomly engulfed into the cytoplasm, however, no reaction product indicating \(H_2O_2\) production was observed. These macrophages may be included in the category of resting macrophages. Biochemical reports have indicated that the \(H_2O_2\)-producing activity is generally weak in the resident macrophages \(\) (resting macrophages) of normal animals; instead, they can be activated \textit{in vivo} and \textit{in vitro} with bacterial endotoxin lipopolysaccharides \(\) (LPS) resulting in an increased
microbicidal activity and \(\text{H}_2\text{O}_2 \) production (18). We then demonstrated the \(\text{H}_2\text{O}_2 \) production in LPS-activated macrophages. Activated macrophages were prepared by the culture of Mm-l cells (1.3 \(\times \) 10^6 cells/ml) in the presence of LPS (E. coli 0.55 : 135, Difco Lab., Detroit, MI., U.S.A.) at a concentration of 0.1 \(\mu \text{g/ml} \) in a culture flask with a screw cap at 37°C for 20 hr (18). The cells became more irregular in shape with abundant microvilli and cytoplasmic protrusions (Fig. 1). The cell shape reflected the activated macrophages (14). Within the cytoplasm, a marked accumulation of glycogen granules was observed, probably due to an inhibition of mitochondrial oxidative metabolisms by LPS (12). These cells showed highly active phagocytosis. However, the phagocytic site was limited to a particular part of the plasma membrane where extensively protruding cytoplasmic processes had accumulated. The reaction product of cerium perhydroxide was observed only at the area of the plasma membrane in contact with particles (Figs. 1B, C). No reaction product occurred on the remaining free surface of the plasma membrane. After the phagocytosis had progressed, the particles were invaginated into the cytoplasm; the reaction product then became localized on the phagosome membranes (Fig. 1A). The product amount decreased when 0.2 \(\mu \text{g/ml} \) cytochrome c \((\text{O}_2 \text{ scavenger; from horse heart, type VI, Sigma Chem. Co., St. Louis, Mo.}) \) or 0.2 \(\mu \text{g/ml} \) catalase \((\text{H}_2\text{O}_2 \text{ scavenger; from bovine liver, C-100, Sigma}) \) was added to the reaction medium (Fig. 2A). Benzoquinone (1.0 mM; \(\text{O}_2 \) scavenger) markedly diminished it (Fig. 2B). These results agreed with the physiological evidence (9).

The fact that the initial site of deposit-formation was limited to the particular area where the plasma membrane interacted with the particles may indicate that NAD(P)H oxidase, located in only the intact area, was stimulated through contact with the particles. This is shown strikingly in Fig. 1B. The probable question is: Can all free surface NAD(P)H oxidase be stimulated to produce \(\text{H}_2\text{O}_2 \) and subsequently be internalized into phagosomes? This has been answered through the use of short term phagocytosis (16). This experiment was performed by adding a cold EDTA solution to the cell suspension immediately after the addition of particles, since calcium helps to initiate the activation of NAD(P)H oxidase (4). No difference between short and long term phagocytosis was found in the deposit results. Therefore, the oxidase stimulated only at the membrane which contacted with the particles produced \(\text{H}_2\text{O}_2 \). In the case of guanidine- or saponin-stimulated \(\text{H}_2\text{O}_2 \) production in PMN (17) and macrophages (13), the reaction product was seen on the free surface of the plasma membrane. In the present study, the phagocytizing activated macrophages exhibited a special cell shape like a capped structure with accumulated cytoplasmic protrusions. This shape closely resembles the capped cells induced by concanavalin A and uropods in phytohemagglutinin-stimulated lymphocytes (1). As indicated in Fig. 1, the activated macrophages engulfed particles by protruding the cytoplasmic processes toward the particles.

Fig. 1. \(\text{H}_2\text{O}_2 \) production by LPS-activated macrophages. Reaction product is observed on the plasma membrane in contact with particles. All figures unstained. A. A typical cell with a capped structure (CS) where the particles have been engulfed. Arrows indicate reaction product formation. Gly, glycogen granules; N, nucleus. \(\times \)7,200 B. Initial slight stimulation of the activity is indicated by an arrow. \(\times \)16,000 C. A heavy reaction product is wrapping the particles on the cytoplasmic protrusions. \(\times \)17,000
This is similar to the receptor-mediated phagocytosis (10). The results indicate that
H₂O₂ production by activated macrophages in phagocytosis may occur at the
particle-cell contact of the plasma membrane.

The authors thank Mrs. M. Yamamoto for her assistance. Supported by
Grant-in-Aid for Scientific Research No. 58570017 from The Ministry of Education,
Science and Culture, Japan.

REFERENCES

2. Bielski, B. H. J.: Reevaluation of the spectral and kinetic properties of HO₂ and O₂⁻ free
 oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical methods.
 pig granulocytes. A basis for a continuous assay for monitoring superoxide production and for
 superoxide generating oxidoreductase on the outer membrane of human PMN’s. Biochem.
 myeloblastic cell line when differentiated to macrophages. J. Electron Microsc. 32; 13–19, 1983.
8. Hirai, K.-I., Nagata, K., Maeda, M. and Ichikawa, Y.: Changes in ultrastructures and
 enzyme activities during differentiation of myeloid leukemia cells to normal macrophages.
H₂O₂ Production by Cultured Macrophages

February 20, 1985

KEI-ICHI HIRAI, YOH-ICHIRO OHNO* AND KAZUO OGAWA

Departments of Anatomy and Internal Medicine*, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606