A New Approach to Study the Relationship between Calcium Waves and Diastolic [Ca2+]\textsubscript{i} in Heart Muscle Cells

Akiyuki Takahashi and Tetsuro Takamatsu

Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kyoto 602

Received for publication December 27, 1995 and in revised form January 20, 1996

In the present study, changes in calcium waves with alternation of diastolic [Ca2+]\textsubscript{i} were investigated in a single common rat neonatal cultured heart muscle cell without changes in extracellular conditions. Heart muscle cells were loaded with fluo-3 by the "whole cell clamp" technique. Rapid changes in diastolic [Ca2+]\textsubscript{i} by variations in the membrane potential clarified the influences on calcium waves. When the membrane potential was held at 0 mV, inter wave basal [Ca2+]\textsubscript{i} were maintained at a high level. The membrane-holding potential was then momentarily altered to -80 mV and the basal [Ca2+]\textsubscript{i} registered a lower level within 1 sec. During these events, spontaneous calcium waves were analyzed by confocal laser scanning microscopy (X-t scanning mode). The frequency and velocity of calcium waves at 0 mV significantly increased compared with those at -80 mV. Moreover, these changes were more pronounced with increasing extracellular [Ca2+]. These results suggest that diastolic [Ca2+]\textsubscript{i} directly influences calcium waves.

Key Words: Diastolic [Ca2+]\textsubscript{i}, Calcium wave, Whole cell clamp, Confocal laser scanning microscope

I. Introduction

The calcium wave in heart muscle cells is an abnormal Ca2+-transient [9, 10, 16, 17, 22], and is usually encountered when cells are Ca2+-overloaded. Ischemia-reperfusion [7] and injury of papillary muscles [20] are typical examples of such a phenomenon. Therefore, they are thought to be related with certain arrhythmiae [7, 16, 17, 19, 20]. It is known that extracellular perfusates containing high Ca2+ concentrations ([Ca2+]) induce high-frequency calcium waves [9, 12]. However, the direct relationship between the level of diastolic intracellular free Ca2+ concentrations ([Ca2+]\textsubscript{i}) and calcium waves remains unclear. High extracellular [Ca2+] not only produce elevation of diastolic [Ca2+]\textsubscript{i}, but also influence cellular Ca2+-handling. All such events contribute to a compensation mechanism regulating the calcium waves.

The purpose of this study was to clarify the direct relationship between diastolic [Ca2+]\textsubscript{i} and calcium waves under constant extracellular conditions. Confocal laser scanning microscopy (CLSM) [18, 19] and rapid alternation of diastolic [Ca2+], with the "whole cell clamp" technique [6] enabled us to analyze the direct effects of variations in diastolic [Ca2+]\textsubscript{i} on calcium waves in a single common heart muscle cell.

II. Materials and Methods

Cultured heart muscle cell preparation

Heart muscle cells were obtained by enzymatic digestion of ventricular tissues from neonatal (2-4 days of age) Wistar rats as described previously [12]. The minced ventricular cubes were suspended and disaggregated in phosphate-buffered solution (pH 7.3) containing 0.2% collagenase (type I, Sigma Chem. Co.) for 60 min at 37°C. The cells were incubated in Dulbecco's modified Eagle's medium containing 10% fetal calf serum for 3-5 days.
Perfusion
Cells were perfused with a modified Tyrode's solution containing 145 mM NaCl, 4 mM KCl, 1 mM MgCl₂, 5 mM or 10 mM CaCl₂, 10 mM D-glucose and 10 mM N-2-hydroxyethylpiperazine N'-2-ethanesulfonic acid (HEPES) (pH 7.3; adjusted with NaOH). All experiments were conducted at room temperature (20-24°C).

Whole cell clamp
Cells were loaded with fluo-3 through a micropipette electrode by rupturing a patch in the cell membrane. Electrodes were filled with a medium containing 100 μM fluo-3, 2 mM ATP (dipotassium salt), 140 mM KCl, 12 mM NaCl, 2 mM MgCl₂ and 10 mM HEPES (pH 7.2; adjusted with KOH). Cells were voltage-clamped using the "whole-cell recording" technique [6]. The membrane-holding potential was initially adjusted to 0 mV. After [Ca²⁺] increased homogeneously with excitation-contraction coupling (E-C coupling), calcium waves followed with a high frequency. The membrane-holding potential was then changed to -80 mV momentarily. The changes in [Ca²⁺] and calcium waves via this sequence of events were analyzed by CLSM (X-t scanning mode; 4 sec/frame, successive 2 frames, 8 msec/line) [6, 19].

Confocal microscopy and image analysis
The system for CLSM consisted of the following subsystems; a confocal laser scanning apparatus, an inverted microscope (Olympus IMT-2, Japan), an image processor (Imaging Technology Inc. Series 151, USA) and electrophysiological equipment. These subsystems were controlled by a 32-bit personal computer (Sanyo MBC-18TJ, Japan) using the "C" language, library of subroutines available for GP-IB and analog-digital interfaces (National Instruments, USA).

The argon laser beam (λ=488 nm, 10 mV) was projected via a beam expander and a dichroic mirror (λ=500 nm) to establish a fluorescent light, which was then directed to a photomultiplier through the dichroic mirror and a pinhole aperture (100 μm) to create a confocal image. A viewing image was generated from the fluorescence intensity data, which were stored in a 512 × 512 × 8-bit frame memory. In the present study, we employed a line scan method (maximum speed: 2 msec/line), where

![Image of calcium waves generation](image-url)
scanning on a line corresponding to the long axis of a cultured heart muscle cell along the X axis was done (X-t scanning) to facilitate quantitative study of rapid changes of [Ca\(^{2+}\)].

III. Results

Membrane potential and [Ca\(^{2+}\)]

While the membrane-holding potential was maintained at 0 mV, inter calcium wave basal [Ca\(^{2+}\)] remained higher than at -80 mV (Fig. 1C). After the membrane-holding potential was rapidly restored to -80 mV, basal [Ca\(^{2+}\)] recovered to the resting [Ca\(^{2+}\)], level within 1 sec. Because basal [Ca\(^{2+}\)], levels at 0 mV and -80 mV were consistent, the influence by changes in the loading conditions or photo-bleaching of the Ca\(^{2+}\) indicator could be ignored in this study.

Frequency and velocity of calcium waves

When basal [Ca\(^{2+}\)] was maintained at a high level with membrane-holding potential at 0 mV, the frequency of calcium waves significantly increased compared with that at -80 mV (Fig. 1B). In addition, the propagating speed of calcium waves was significantly increased with elevation of the basal [Ca\(^{2+}\)].

Effect of extracellular [Ca\(^{2+}\)]

When the perfusate [Ca\(^{2+}\)] was adjusted at 10 mM, changes due to variations in the basal [Ca\(^{2+}\)], were enhanced. In addition, calcium sparks [5] occurred more frequently and distinct calcium waves were occasionally unable to be detected for significantly elevated basal [Ca\(^{2+}\)], (Fig. 2).

IV. Discussion

In our present study, the direct effects of diastolic [Ca\(^{2+}\)], on calcium waves in a single common heart muscle cell were tested. This novel approach enabled us to acquire various basal [Ca\(^{2+}\)], without producing structural changes in the organelles and generating differences in loading conditions of Ca\(^{2+}\) indicators and extracellular conditions including the perfusate [Ca\(^{2+}\)]. This is an important stipulation. In changing the perfusate [Ca\(^{2+}\)], diastolic [Ca\(^{2+}\)], is certain to increase, altering subsequently the many other factors controlling cellular Ca\(^{2+}\)-handling, such as the Ca\(^{2+}\) channels, Ca\(^{2+}\) pumps and Na\(^+\)-Ca\(^{2+}\) exchanger. Therefore, changes in calcium waves

![Fig. 2. Generation of calcium waves at 10 mM perfusate [Ca\(^{2+}\)]. Changes in the calcium waves with variations in basal [Ca\(^{2+}\)], were more pronounced and were accompanied by frequent calcium sparks. In addition, calcium waves at 0 mV were occasionally unclear for remarkably elevated basal [Ca\(^{2+}\)].](image-url)
may be dependent on not only elevated diastolic [Ca^{2+}]_{i} but also these factors. In this study, we managed to monitor calcium waves at various diastolic [Ca^{2+}]_{i} levels without changing the extracellular factors.

On holding the membrane potential at 0 mV for more than 10 sec, Ca^{2+} channels at the cell membrane are inactivated [4]. Although the membrane-potential-dependent [11] Na^{+}/Ca^{2+} exchanger makes a difference in the basal [Ca^{2+}]_{i}, the membrane potential per se does not directly influence Ca^{2+}-induced Ca^{2+} release (CICR) [3, 13, 14], which is regarded as a propagating mechanism of the calcium wave [9, 10, 16, 17, 22]. This is because CICR in heart muscle cells is mainly dependent on the Ca^{2+}-releasing channel and Ca^{2+}-restoring pump in sarcoplasmic reticulum (SR), which are thought to be independent of the membrane potential itself [1, 14]. The present study clarified that alternations in calcium wave propagation are controlled by basal [Ca^{2+}]_{i}. Therefore, it is suggested that diastolic [Ca^{2+}]_{i} influences the Ca^{2+}-releasing channel and Ca^{2+}-restoring pump in SR directly. However, it should be elucidated hereafter whether the difference in membrane potential would involve the function of the Ca^{2+} channel and Ca^{2+} pump in SR completely.

Our findings revealed that frequency and velocity of calcium waves increased at a high basal [Ca^{2+}]_{i}. The propagating speed was dependent on the intervals between each Ca^{2+} release from the neighboring SR. There are two possibilities accounting for these changes: firstly, Ca^{2+} pooling in SR is so great that released Ca^{2+} rapidly reaches the threshold of CICR under elevated diastolic [Ca^{2+}]_{i} conditions [8, 15, 21]; secondly, the relative threshold decreases with elevation in basal [Ca^{2+}]_{i}. Because the frequency is dependent on the basal [Ca^{2+}]_{i}, the latter appears to be more rational, whereas the former warrants further studies.

It is thought that the calcium wave is an abnormal Ca^{2+} transient, and this phenomenon is closely related to mechanism of various arrhythmiae. Our findings suggest that spontaneous calcium waves can be easily induced and propelled at high basal [Ca^{2+}]_{i}. These events may expound the frequent occurrence of arrhythmiae at high diastolic [Ca^{2+}]_{i}, as in the case of a heart failure [2].

V. References