Change in Intracellular pH of Working Muscle during Constant and Stepwise Incremental Load Exercise

Koichi IWANAGA¹, Kouichi SAIYOG², Tadao MINAMI¹, Masao SAKURAI¹ and Yoshiyuki KATO²

1) Saga Research Institute, Otsuka Pharmaceutical Co., Ltd.
2) Department of Orthopedic Surgery, School of Medicine, The University of Tokushima

In this study, subjects performed wrist flexion in isokinetic manner by using CYBEX dynamometer while their right forearm was attached in a MR magnet. ¹³P-MR spectra were obtained from wrist flexor muscles before and throughout the exercise. Intracellular pH of muscle was calculated from the chemical shift between phosphocreatine (PCr) and inorganic phosphate (Pi). Fifteen Japanese males volunteered as subjects. They performed two experimental protocols, i.e. constant load test (CT) and stepwise incremental load test (IT). In CT, 10 of the subjects were participated. After 2 minutes rest, wrist flexion of 10, 20, 30, 40 or 50 % of maximal voluntary contraction force (MVC) was performed at 2 seconds intervals for 15 minutes. In IT, 14 including 9 of CT were participated. They performed wrist flexion in incremental contraction force of 5 steps from 10 % to 50 % of MVC for 3 minutes in each step. Changes in intracellular pH of muscle against contraction level show non-linear relationships both in CT and IT. From this relationship we calculated the contraction level at which pH was 6.9 (%MVC₆₉). Mean values of obtained %MVC₆₉ by CT and by IT were 29.3 and 30.0 % of MVC, respectively. And, significant correlation was found between %MVC₆₉ by CT and by IT. This result shows that %MVC₆₉ was a reproducible index independent of the type of exercise test, i.e. constant or incremental load test, and might reflect the physiological characteristics of the muscle.

Key words: ¹³P-MRS, Intracellular pH, Dynamic contraction

近年、磁気共鳴分光法（Magnetic Resonance Spectroscopy, MRS）の進歩により、ヒトの骨格筋等の組織のエネルギー代謝に関する情報を、非侵襲的かつ経時的に観察することが可能になった。エネルギー代謝に関する情報は、¹³Pを対象としたMRS（¹³P-MRS）によるアデノシン三リン酸（ATP）やクレア

筋細胞内pHの低下と収縮強度の関係

チシンリン酸（PCr）、無機リン（Pi）等の測定によって得ることができる（Chance et al., 1986）。また、測定対象のpHによってスベクトルの化学シフトが変化することから、対象組織の細胞内pHを算出することも可能である。Marsh et al.（1991）は、31P-MRSを用いてラムの有酸性筋のヒート格子（尺側手根伸筋）のpHおよびPCr、Piの変化を調べ、対象筋の最大仕事力の約60％の強度においてpHの低下が観察され、この強度はPi/PCrによって表されるリン酸化能が低下を始め弱強度に一致することを報告している。また、Sahlin（1986）は筋収縮によるpHの低下の85％以上が解糖系によって生成された乳酸由来的水素イオン（H⁺）の増加に起因するものであると述べている。これらの報告は、ATPとして表される血中乳酸の変化を、筋細胞内の現象から説明するものとして興味深い。

我々は、以前の報告において静的筋収縮の持続を制限する因子として、pHの低下が有力であり、筋疲労の発現に筋細胞内pHの変化が大きく関与していることを考察した（Iwanaga et al., 1991）。本研究においては、筋疲労を考慮した動的筋作業を設定するための指標としてのpHの可能性を検討するために、一定の収縮強度を保持した場合と、段階的に収縮強度を増加させた場合とで、pHの変化を調べた。

方 法

本研究ではChanceの研究グループの報告に準じて、CYBEXを用いた手首の握力運動を行った（McCully et al., 1988）。使用したMRスベクトロメーターは、磁束密度1.9T、ボア直径27cmの超伝導電磁石を有するものであった。被験者は、ボア内に右前腕をベルトで固定した状態で、CYBEXダイナモーターにクランクを介して連結されたハンドルを握り、メトロノームの音にあわせて0.5Hzのリズムで手首の握力運動を行った。CYBEXダイナモーターの角速度は30°/secとした。被験者の発揮する力（CYBEXダイナモーターの回転軸にかかるトルク）は、ポリグラフのブラウン管上にピークとして表示し、被験者は自分の発揮するカービーを、実験毎に指示された水平線に対応させるように努力した。

本研究は、述べた手首の握力運動について2つのプロトコールで実験を行った。一つは一定強度を維持する定常負荷テスト（constant load test, CT）であり、一方は負荷を段階的に増加させる漸増負荷テスト（incremental load test, IT）である。被験者は、両プロトコールを合わせて15名の健康な日本人成人男子であった。

CTでは15名中10名が被験者として参加した。CTでは実験の最初に測定した手首握力の最大値（maximal voluntary contraction force, MVC）の10, 20, 30, 40, 50％に相当する力を各々15分間、手首の掌屈を行った。5つの運動強度の実験は1日に1回づつ、無作業で順番で行った。運動の途中で指定した力を発揮できないか、0.5Hzのリズムを維持できなくなった場合には、運動を中止した。運動前2分間の安静時と15分間の運動時に、連続的に31P-MRSを測定した。

ITでは、CTの被験者9名を含む14名が被験者であった。漸増負荷テストのプロトコールは、2分間の安静に続いて10, 20, 30, 40, 50％MVCを各3分間づつ、合計15分間の手首の掌屈を行うものであった。CTと同様に、その間31P-MRSを連続的に測定した。

31P-MRSは、パルス幅31μsec、パルス繰り返し時間2secで測定した。検出用コイルは直径4cmの

Fig. 1 31P-MR spectra of one of the subjects taken at rest and during contraction in constant load test (CT) and incremental load test (IT).
サーフェスコイルを使用した。データとして使用したスペクトルは、安静時60回、運動時30回の平均加算を行ったものである。安静時にはPiのピークが小さく、検出が困難な場合があるので、安静時ののみ60回の平均加算とした。得られたスペクトルのPiとPCrのピーク間隔（化学シフト、σ）を用いて、次式よりpHを算出した（Taylor et al., 1983）。

\[pH = 6.75 + \log \left(\frac{(\sigma-3.27)}{(5.69-\sigma)} \right) \]

統計学的手法は、結果において各々記述するが、危険率5％以下を有意水準とした。

結果

Fig. 1 は、ある被験者の\(^{31}\)P-MR スペクトルを、CT と IT について安静時、および各運動強度について示したものである。各運動強度のスペクトルは、CTについては15分間の運動の最後の1分、またITについては各強度3分間の最後の1分についてのものである。運動強度の増大に伴ってPCrの減少とPiの増大が観察されるが、CTとITの間では特に顕著な差異は認められなかった。

Fig. 2 は、細胞内のpHが一定強度で行われた負荷テスト（CT）と増加負荷テスト（IT）中のpH変化を示す。各データは平均±SEで、\(n=7\)。
筋細胞内pHの低下と収縮強度の関係

Fig. 2 は、CT と IT について、運動中のpHの変化を被検者群の平均値と標準誤差で示したものである。CT の50％MVC の条件では、10名中3名の被検者が先に述べた理由から途中で運動を中止したので、この3名を除いた7名の平均値を示している。CT では、30％MVC 以上の強度において顕著なpHの低下が観察され、約5分目以降に定常に達する傾向が認められる。IT では、20％MVC の2分目以降にpHが低下しており、各運動強度において定常状態は認められなかった。

Fig. 3 は、CT と IT について、運動強度とpHの関係を示したものである。この図においては、CT では運動の最後の5分間の平均値を各被検者の運動強度に対するpHとし、IT では各強度 3 分間の最後の1分間のpHを用いた。運動強度の増加に対してpHは低下するが、両者の関係は直線的ではなく指数関数的であった。Fig. 3 に示したデータをy = a(1-e^{-kx})の式にあてはめると、相関係数はCT とITについて各々、0.981, 0.998であった。この曲線に回帰した場合と直線に回帰した場合を、回帰からの残差についての分散分析で比較すると（Snedecor and Cochran, 1967; Vieth, 1989）IT に関しては有意な曲線性が認められた（F = 67.9, φ = 1.3, p < 0.01）。CT については、曲線回帰の相関係数の方が大きかったが、分散分析の結果有意な差異は認められなかった。CT では、30％MVC において2名の被検者で特にpHが低かったので、この2名を除いた分散分析を行うと有意な曲線性が認められた（F = 38.1, φ = 1.3, p < 0.01）。

表1 %MVC, は定荷重負荷試験（CT）と増加荷重負荷試験（IT）の間での比較である。

<table>
<thead>
<tr>
<th>Subject</th>
<th>CT</th>
<th>IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.2</td>
<td>18.8</td>
</tr>
<tr>
<td>2</td>
<td>30.1</td>
<td>26.9</td>
</tr>
<tr>
<td>3</td>
<td>23.1</td>
<td>25.4</td>
</tr>
<tr>
<td>4</td>
<td>36.2</td>
<td>54.5</td>
</tr>
<tr>
<td>5</td>
<td>26.9</td>
<td>15.1</td>
</tr>
<tr>
<td>6</td>
<td>35.3</td>
<td>31.9</td>
</tr>
<tr>
<td>7</td>
<td>23.5</td>
<td>30.9</td>
</tr>
<tr>
<td>8</td>
<td>29.3</td>
<td>21.7</td>
</tr>
<tr>
<td>9</td>
<td>35.5</td>
<td>39.4</td>
</tr>
<tr>
<td>10</td>
<td>29.5</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>34.6</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>33.7</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>18.3</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>16.4</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>52.0</td>
</tr>
<tr>
<td>Mean</td>
<td>29.3</td>
<td>30.0</td>
</tr>
<tr>
<td>SE</td>
<td>1.6</td>
<td>3.3</td>
</tr>
</tbody>
</table>
Kent-Braun et al. (1990)は、pHが6.9以上である時には、エネルギー代謝における解糖系の関与が最大であると述べている。この報告に基づき、pHが6.9の時点の筋収縮強度を、筋組織におけるエネルギー代謝に関する臨界的収縮強度(％MVCs)とし、先に求めた指数回帰曲線から値を算出した。CTとITについて、各被験者毎に求めた％MVCsをTable 1に示している。％MVCsの平均はCTとITの各々について、29.3、30.0％MVCであった。Fig.4は、CTとITに共通した9名の被験者について、CTとITの各々で求めた％MVCsの相関を調べたものである。両者の間には有意な正の相関が認められた。

考察

本研究において、動的筋収縮では約30％MVCの収縮強度を越えると顕著な筋細胞内PHの低下が発現することが認められた。Marsh et al. (1991)は、同様のP-MRSを用いた研究において、最大効率の約60％を越える筋細胞内pHが低下を始めることを報告している。Marsh et al. (1991)と同様に最大効率に対する割合として表現しても％MVCsの値は変わらないので、本研究において％MVCsとして求めた臨界収縮強度とMarsh et al. (1991)の報告したそれとの間に大きな差異が存在する。この違いを断定的に説明することはできないが、実験に用いた被験者集団の身体的特性の違い他に、以下に述べる筋収縮強度の決定方法の違いが影響しているものと思われる。彼らの報告では、本報告と同様の手首の挙上運動を行っているが、作業負荷に対するpHの変化を2本の直線に回帰しきれども交点として筋収縮強度を求めていった。我々が求めた％MVCsは、安静時と10～50％MVCの6段階についてのデータによる回帰曲線からpHが6.9になる収縮強度を求めたものである。

CTとITの各々で求めた％MVCsを比較すると、平均値では両者とも約30％MVCで一致しているが、標準誤差及び範囲は、CTとITの各々について、1.6、23.1-36.2％MVC、3.3、15.1-54.5％MVCであり、CTで求めた％MVCsの方が被験者間のばらつきが大きくなる(Table 1)。この原因としては、CTでは全ての被験者における筋細胞内の酸塩基平衡の定常状態が達成されていたが、ITでは被験者間の筋の特性の違いによって定常状態に至る過渡的応答の段階に差があったことが考えられる。しかしながら、Fig.4に示した様にCTとITで求められた％MVCsの間に有意な相関が認められたことは、異なるプルコールであっても、％MVCsによる筋の特性の評価結果に再現性があることを示している。このことは、％MVCsが何らかの個人の姿質としての筋の生理学的特性を反映していることを表すものと解釈できる。本結果のみから断定的に述べることはできないが、低強度の筋収縮における酸塩基平衡維持能は、速筋や慢筋の筋細胞組成を反映するかと思われることから(Adams et al.,1990; Burton, 1978; Castellini and Somero, 1981; Ivy et al.,1980)，％MVCsがこれらの筋の特性を反映している可能性が示唆される。また、％MVCsによって表される筋の生理学的特性は、筋疲労を考慮した筋作業の設定や個人の筋の疲労特性の評価等、人間工学や労働衛生学等の分野における応用が期待される。さらに、速筋作業が一回でよいことや、決定された％MVCsの種類差が強調されることから、指標としての実用性はITによって測定した方が高いと考えられる。

筋収縮による筋細胞内pHの低下は、主に乳酸が原因であると言われている(Hultman and Sahlin, 1981; Sahlin and Henriksson, 1984; Sahlin et al., 1976)。従って、本研究で観察された非直線的なpHの低下は、筋収縮強度の増大に関連する解糖系の関与による乳酸の産生を反映するものであると解釈することができる。しかしながら、PCrの加水分解にによるエネルギー産生反応は、H+を取り込みアルカリホスとして作用することが知られている(Adams et al.,1990)。本結果においては、10、20％MVCの低強度の収縮においてもPCrは減少する傾向が認められたので（Fig.1），pHが低下しない低い強度の筋収縮においてもPCrの加水分解によるアルカリホスに抗対するアシドーシスが存在することが推察される。

従来の考え方は、低強度の筋活動は有酸素性のエネルギー産生に依存すると言われてきた(Astrand and Rodahl, 1982)。しかしながら、完全に酸素が存在する場合でも乳酸の産生が生じることが試みた研究も報告されており、解糖系の関与は有呼吸に必ずしも無酸素状態を反映するものではないと考えられている（Connett et al.,1984; Ivy et al.,1981; Jobsis,1963; Kuel et al.,1967; Saltin et al.,1976)。従って、低強度の筋収縮では、解糖系による乳酸の産生に対して、PCrの加水分
解や HCO₃⁻ (Wasserman, 1984); HPO₄²⁻ (Adams et al., 1990) などが緩衝系として作用し pH は一定に維持されるが、収縮強度の増大により乳酸の産生量が増加すると、この平衡状態が維持されなくなり pH が低下するものと解釈される。

本研究では、5 種類の 50% MVC 以下の筋収縮から %MVCₐₐを算出したので、それ以上の強度での収縮における筋細胞内 pH の動態は不明であり、%MVCₐ₂の推定方法およびその精度等についても検討の余地がある。また、%MVCₐₐによって表される筋細胞内 pH の維持能力と乳酸産生との関係についても推察の域を越えず、Marsh et al. (1991) の報告したように筋細胞内 pH の動態が膜構的パターンを示すならば、血中乳酸濃度の上昇値 (LT) との関連も今後の検討課題として興味深い点である。

文 献
Åstrand, P.-O., and K. Rodahl (1982); 順比奈一男監訳 欧州運動生理学第 4 版、大修館書店、東京
Chance, B., J. S. Leigh, Jr., J. Kent, and K. McCully (1986); Metabolic control principles and ³¹P NMR. Federation Proc., 45: 2915-2920
Jobsis, F. F. (1963); Spectrophotometric studies on intact muscle. II. Recovery from contractile activity. J. Gen. Physiol. 46: 929-934
Keul, J., E. Doll, and D. Keppler (1967); The substrate supply of the human skeletal muscle at rest, during, and after work. Experientia 23: 1-6
McCully, K. K., J. A. Kent, and B. Chance (1988); Application of ³¹P magnetic resonance spectroscopy to the study of athletic performance. Sports Medicine, 5: 312-321
Sahlin (1986); Muscle fatigue and lactic acid accumulation. Acta Physiol. Scand. 128 (Suppl. 556): 83-91
Sahlin, K., R. C. Harris, B. Nylind, and E. Hultman (1976); Lactate content and pH in muscle samples obtained after dynamic exercise. Pfluegers Arch. 367: 143-149

NII-Electronic Library Service

Snedecor, G. W, and W. G. Cochran (1967); 畜村史好，奥野忠一，津村善郎共訳，統計的方法，原書第6版，岩波書店，東京

岩永光一 〒842-01 佐賀県神埼郡高崎村大字大曲字東山5006-5 大崎製薬株式会社佐賀研究所

Koichi Iwanaga Saga Research Institute, Otsuka Pharmaceutical Co., Ltd.
Higashikamimura, Kanzakigun, Saga 842-01, Japan