擴張 SEA を用いた建物内固体伝搬音の予測方法と適用例
CALCULATION METHOD OF STRUCTURE-BORNE SOUND IN BUILDINGS USING EXTENDED SEA AND A EXAMPLE OF ITS APPLICATION

minute.田野正典**、安藤 隆***
Atsuo MINEMURA, Masanori TANO and Kei ANDOW

Statistical Energy Analysis (SEA) which is a technique for forecasting the state of structure-borne sound in structure is extended and reformed. The assumption that "the system is diffuse," which limits the range of applicability of SEA is relaxed by expressing the energy of the elements as the sum of the component due to reverberant wave vibration and the component due to direct wave vibration. The extended SEA is able to handle even cases in which the system is not very diffuse and the attenuation is not so small. A comparison of these computed values with the actual measured values, proved that the extended SEA makes it possible to predict the characteristics of vibration propagation or attenuation in the buildings.

Keywords: statistical energy analysis, structure-borne sound, vibration propagation
統計的エネルギー解析法、固体伝搬音、振動伝搬

1. はじめに
構造物内部を振動として伝搬し、空気音として放射される固体伝搬音の予測手法の一つとして、SEAの適用が試みられ、現在船舶等の機構造物については予測精度向上のための研究(1)が行われ、実構造物の固体音の予測手法として実用化されている。
しかしながら SEAはその仮定条件として構造物を構成する要素間の結合が弱いこと、また要素内のダンピングが小さいこと、つまり系がreactiveであることを仮定条件としており、鋼材に比べ減衰が大きくまた要素間の結合も強いコンクリートを主たる構成部材とする建築物での固体伝搬音予測に関してはその適用例は少ない。
本報ではSEAの適用範囲を制限している、「系が拡散的であること」の仮定を緩和し、余り拡散的でなく減衰が大きい場合も扱えるようにした拡張SEAの構造物内振動伝搬予測への適用方法と、計算上重要なパラメータである内部損失、結合損失の具体的算出方法について示す。

また実際のRC構造物について実測と拡張SEAによる予測計算を行い、比較検討した結果は良好な一致を見たのでその概要を報告する。

2. SEAによるパワーロー方程式
2.1 SEA
SEAは複雑な系（構造物）の振動状態を解析するのに適しており、解析に当って系は動的特性が一定と見なされる個々の要素に分割される。これがSEAで取り扱う最小単位であり、SEAでは系全体のパワーローを以下の比例定数を用いて表す。
1)内部損失係数: 一つの要素の中で減衰するパワール系の持つエネルギーに比例する。
2)結合損失係数: 要素間のエネルギーの高い要素から低い要素へ、そのエネルギーの差に比例したパワーローが流れる。
これらの比例定数を用いて要素のエネルギー状態を記述するものがSEA方程式である。つまりいくつかの要素からなる系の振動状態は、ベクトルのアレフ（∠）を用い、

* 鹿島技術研究所 研究員・工修
** 鹿島技術研究所 主管研究員・工修
*** 鹿島技術研究所 主管研究員・博士（工学）

Research Engineer, Kajima Technical Research Institute, M.Eng.
Chief Research Engineer, Kajima Technical Research Institute, M.Eng.
Chief Research Engineer, Kajima Technical Research Institute, Dr. Eng.
多元1次方程式である式(1)で表される。

\[\eta E = \Pi / \omega \] (1)

\[\eta = \{ \delta_{ap} \eta_{at} - (1 - \delta_{ap}) \eta_{ba} \} \]
\[E = \{ E_a \} \]
\[\Pi = \{ \Pi_{at} \} \]
\[\eta_{at} = \eta_a + \Sigma \eta_{ba} : \text{要素} \alpha \text{の全損失係数} \]
\[\eta_a : \text{要素} \alpha \text{の内部損失係数} \]
\[\eta_{ap} : \text{要素} \alpha \text{から要素} \beta \text{への結合損失係数} \]
\[E_a : \text{要素} \alpha \text{の拡張エネルギー} \]
\[\Pi_{at} : \text{要素} \alpha \text{への外部入力パワ} \]
\[\omega : \text{周波数を帯域幅とする中心角周波数} \]
\[\delta_{ap} : \alpha \text{と} \beta \text{のとき} \delta_{ap} = 1 \]
\[\alpha \neq \beta \text{のとき} \delta_{ap} = 0 \]

なお、マトリックスを太字で行ベクトルを表す。
これらの式は以下のように定義されている。
①系と要素の振動は拡散的であり、モード密度が十分に大きく減衰が小さい。
②各要素間の結合は弱く、エネルギ保存則が成り立つ。
③各要素内の振動分布は一様であり、また間数に依存しない。

つまり式(1)はreactiveに近い状態の範囲では有用である。
RC構造物等の建築物のように比較的減衰が大きく、また結合が強い系に対して適用することは困難である。
SE Aの利用が期待される。

2.2 S E Aの拡張

本論文において取り扱う系(建築物)及び要素(床、壁等)は、減衰が大きく結合が強いのでSEAの理論を拡張し、建築物の固体波動の予測に用いる。

SEAの拡張については、Smithによる要素間の結合が強い場合への拡張と、更に系がより拡散的である場合についてのMidaniによる拡張がある。
ここでMidaniの拡張を用い減衰が大きい場合も扱えるようにした。以下のその方法を述べる。

系の振動エネルギーは一般に、拡散波振動と直接波振動の和として次式のように表わす。

\[E = E_a + \omega E \] (2)

\[E = \{ E_a \} : \text{系の振動エネルギベクトル} \]
\[E_a = \{ E_{a} \} : \text{拡散波振動のエネルギベクトル} \]
\[E_a = \{ E_{aa} \} : \text{直接波振動のエネルギベクトル} \]

また添字aは拡散波による振動成分を添字dは直接波による振動成分を表し、要素の拡散状態は、\[E_a \subset E_a \text{のとき拡散的、} \]
\[E_d \subset E \text{のとき非拡散的であるとする。} \]

通常のSEAではその仮定から拡散波振動の成分を扱っていると解釈できるので、式(1)のSEA方程式は(3)に書き換えられる。

\[\eta E = \Pi / \omega \] (3)

\[\eta = \{ \delta_{ap} \eta_{at} - (1 - \delta_{ap}) \eta_{ba} \} \]
\[E = \{ E_a \} \]
\[\Pi = \{ \Pi_{at} \} \]
\[\eta_{at} = \eta_a + \Sigma \eta_{ba} : \text{要素} \alpha \text{の全損失係数} \]
\[\eta_a : \text{要素} \alpha \text{の内部損失係数} \]
\[\eta_{ap} : \text{要素} \alpha \text{から要素} \beta \text{への結合損失係数} \]
\[E_a : \text{要素} \alpha \text{の拡張エネルギー} \]
\[\Pi_{at} : \text{要素} \alpha \text{への外部入力パワ} \]
\[\omega : \text{周波数を帯域幅とする中心角周波数} \]
\[\delta_{ap} : \alpha \text{と} \beta \text{のとき} \delta_{ap} = 1 \]
\[\alpha \neq \beta \text{のとき} \delta_{ap} = 0 \]

そこで、\[\Pi \]は入力パワに対して拡散成分の比を表し、\[\alpha \beta \]は要素 \(\alpha \)から \(\beta \)への伝達率を、\(a \)は要素 \(\alpha \)での吸収率を表す。これらは次式で与えられる。
\[a_{a} = \left(\frac{\lambda_{a} k_{a}}{\omega} \right) \eta_{at} \]
\[\delta_{ba} = \left(\frac{\lambda_{b} k_{b}}{\omega} \right) \eta_{ba} \]
\[\lambda_{a} : \text{要素} \alpha \text{の平均自由行程} \]
\[k_{b} : \text{要素} \alpha \text{の波数} \]

また式(4)が成り立つ条件は \(\lambda_{a} \)、\(k_{a} \)が1であり、\(\lambda_{a} \)、\(k_{a} \)が1でなければならない。

式(1)(4)より式(5)を導く。

\[a_{a} = \left(\frac{\lambda_{a} k_{a}}{\omega} \right) \eta_{at} \]
\[\delta_{ba} = \left(\frac{\lambda_{b} k_{b}}{\omega} \right) \eta_{ba} \]
\[\lambda_{a} : \text{要素} \alpha \text{の平均自由行程} \]
\[k_{b} : \text{要素} \alpha \text{の波数} \]

また実効入力パワベクトルは外部からの加振による入力パワと、結合している他の要素からの入力パワの和で表せる。つまり要素のエネルギは次式で表せる。

\[E = E_{a} + E_{d} = D \Pi \] (6)

\[D = D_{a} + D_{d} \]
\[D_{a} = \{ \delta_{ap} \left(\frac{\lambda_{a} k_{a}}{\omega} \right) / C_{a} \} \]
\[D_{a} = \{ \delta_{ap} \left(\frac{\lambda_{b} k_{b}}{\omega} \right) / C_{a} \} \]
\[\Pi = \{ \Pi_{at} \} \]
\[\zeta_{a} = \left(1 - \lambda_{a} / a \right) : \text{要素} \alpha \text{での吸収残余} \]
\[d_{a} = \left(1 + 2 \zeta_{a} / 1 - \lambda_{a} / a \right) \text{と} 3 \text{次元での散逸係数} \]
\[C_{a} : \text{要素} \alpha \text{での群速度} \]

ここで、\(\zeta_{a} < d_{a} \)のとき系は拡散的、\(d_{a} < \zeta_{a} \)のとき系は非拡散的である。

以上の式(2)(3)(6)より実効入力パワベクトルは次式で得られる。

\[\Pi = \left(D_{a} \right)^{-1} \{ \omega \eta_{a} \}^{T} B_{a} \]

\[\Pi = \{ \Pi_{at} \} \] (7)

つまり拡張されたSEA方程式は式(8)となる。

\[E = D_{a} + D_{d} \] (8)

式(8)は系のエネルギ、外部入力パワ、実効入力パワに直接波成分を考慮しており、系の振動が拡散的ではない場合への適用が可能である。

以下の式(2)(3)より実効入力パワベクトルは次式で得られる。

\[\Pi = \left(D_{a} \right)^{-1} \{ \omega \eta_{a} \}^{T} B_{a} \]

式(8)は系のエネルギー、外部入力パワを含む、実効入力パワに直接波成分を考慮しており、系の振動が拡散的でない場合への適用が可能である。

3. パラメータの算出方法

式(8)に得られた拡張されたSEA方程式を解くためのパラメータの算出方法について述べる。ただしここでは、板系から成る構造物の曲げ波成分のみを取り扱うこととし、波動・波動等曲げ波以外の振動成分及び空気音による放射成分については考慮していない。
3.1 要素のエネルギー

共振状態にある板要素のエネルギーは次式で表される。

\[E_a = m_a (v_a)^2 \] (9)

\(m_a \): 要素\(\alpha \)の質量
\(v_a \): 要素\(\alpha \)の振動速度

つまりSEA方程式より求めた要素のエネルギーは、式(9)で各要素の振動速度\(v_a \)の平方の和を求まる。

3.2 内部損失係数

ここで板の曲げ波を扱う事から要素の内部損失係数として材料の曲げ波の損失係数\((p) \)を用いる。

そこで材料となるコンクリートの内部損失係数を知るために、コンクリート製の梁（寸法: 45×120×1560mm, 質量: 21kg）を用いた損失係数\((p) \)の測定を行なった。測定は梁の1次の曲げモードの節に当たる2点をワイヤーで吊り下げる、シェーカーを用いてランダムノイズ加振した際によい得られた加振力と振動速度の周波数応答の共振ピークより半値幅法で求めた。読み取りの際は、対象半値幅に少なくとも7個以上のサンプルが得られるようズミングした。また実際の測定は振動加速度で取り込み、FFT上で振動速度に変換した。測定ブロックダイアグラムを図-1に、測定結果を図-2に示す。

コンクリートの損失係数の周波数特性はほぼ平坦で、その平均値は5.6×10^-1であった。

3.3 結合損失係数

SEAにおいて結合損失係数は予測精度に大きな影響を与える。しかしながら本パラメータを実験的に求めるのは非常に困難であり、本論文では解析的に求めるとした。

 SEAにおける板要素間の結合損失係数は式(10)で表せる。

\[\eta_{ba} = C_e L \tau_{\alpha \beta} \left(\frac{\omega}{\pi \omega S_a} \right) \] (10)

\(C_e \): 曲げ波の群速度
\(L \): 要素\(\alpha \)と要素\(\beta \)の境界での結合長さ
\(\tau_{\alpha \beta} \): 要素\(\alpha \)から要素\(\beta \)へのエネルギー透過率
\(S_a \): 要素\(\alpha \)の面積

エネルギー透過率の計算方法の基本理論はL.Cremerによって示されており、その具体的な解は垂直入射及ランダム入射に関し示されてきた。ここでは下記の理由で文献2）の手法を用いランダム入射の透過率\((\tau_a) \)を求めるに至り結合損失係数を算出した。

1. 簡単にランダム入射透過率が求められること。
2. 予測精度が実際の構造物とたいへん異なるものではあるが、確認されていている。

図-3に示す直交する4枚の無限長板で構成される交差部で、部材1から入射角\(\theta_1 \)で曲げ波の入射し、2～4部材へそれぞれ\(\theta_2, \theta_3, \theta_4 \)の角度で曲げ波だけが透過する場合、各部材の共振波形\((v) \)は振幅減衰率\(\tau \)と振幅通過率\(\tau \)を用いて示される。ただしここでは以下の理由により曲げ波から綾波・横波への変換は省略する。

固体音として問題になるのは曲げ波の成分である。

実際に測定で観測できる振動は曲げ波であること。

文献1）より曲げ波のランダム入射透過率の算出結果については、本論文で計算対象とするオクター

図-1 損失係数測定ブロックダイアグラム

図-2 コンクリートの損失係数測定結果

図-3 直交交差部計算モデル
ブーキ境界断面数0000Hz以下の周波数数は、既設と横波と変えるエネルギー透過率を曲げ波に比べると推定がである。
またrとαは近似波を表すこととする。
\[\begin{align*}
 \nu_1 &= \nu_0 = 0 \\
 \nu_2 &= \nu_0 = 0 \\
 a_1 &= a_3 = a_3 = a_4 \\
 M_x + M_y + M_z + M_a &= 0 \\
 \frac{\partial \nu_1}{\partial x} &= \frac{\partial \nu_2}{\partial y} \\
 a_3 &= \frac{\partial \nu_1}{\partial x} = \frac{\partial \nu_4}{\partial y} \\
 M_{a1} &= B_1 \frac{\partial^2 \nu_1}{\partial x^2} + M_{a2} = B_1 \frac{\partial^2 \nu_2}{\partial x^2} \\
 M_{a3} &= B_1 \frac{\partial^2 \nu_3}{\partial x^2} + M_{a4} = B_1 \frac{\partial^2 \nu_4}{\partial x^2} \\
 B_1 &= \frac{E_1 h_1^3}{12(1-\mu_1)} \\
 E_1 \text{：ヤング率} \\
 h_1 \text{：板厚} \\
 \mu_1 \text{：ポアソン比} \\
 B_1 \text{：板材の曲げ硬さ} \\
 \text{添字} z \text{は} z \text{軸回りの回転を表す。}
\end{align*}\]
式(11)(13)から入射角θに対する振幅値率rは次式となる。
\[r_1 = \frac{r_1 \frac{A_1 + 1}{D}}{A_2 + 1} + \frac{V_1}{Y_1} + \frac{W_1}{Y_2} + \frac{V_2}{Y_3} + \frac{V_3}{Y_4} \quad (14)\]
\[D = \gamma A + 1, \quad \gamma = \beta + j \alpha, \quad G = B / B_i \]
部材1からの入射波のエネルギー透過率τ(θ)は振幅反射率rから次式の様に求められる。
\[\tau(\theta) = 1 - \frac{2 \alpha_1^2}{D} \alpha G_i \quad (15)\]
\[|D|^2 = 1 + \sum_{i=1}^{n} \sum_{j=1}^{m} \left(G_i G_j + \{ \alpha, \alpha + \beta, \beta \} \right) \quad (16)\]
部材1から他の部材(2-4)への入射エネルギー透過率は式(17)、またランダム入射透過率は式(18)となる。
\[\tau_{\text{入}}(\theta) = 2 \alpha_1^2 \alpha G_i \quad (17)\]
\[\tau_{\text{入}}\sum_{i=1}^{n} \sum_{j=1}^{m} \left(G_i G_j + \{ \alpha, \alpha + \beta, \beta \} \right) \quad (18)\]
以上に示した式(16)~(18)は十字型交差部での各部材へのランダム入射透過率であるが、欠損している部材についてG=0と置くことでT字及びL字型交差部における各係数が求まる。
エネルギー透過率の計算に際し、曲げ波のみを取扱うための影響を検討するため、上記計算方法と文献7)による計算方法から求めた結果の比較を行った。計算モデルは等厚の4枚の半無限板材で構成される十字型直交交差部で、入射条件は曲げ波の垂直入射とした。

![図-4 曲げ波の垂直入射時のエネルギー透過率の比較（板厚：1=2=3=4）](image)

![図-5 対象建物](image)
計装結果比較を図－4に示す。両計装方法の差は最大で1.4dBであり、曲げ波のみを扱う本手法の実用上の問題は無いと考えられる。

4. 拡張S.E.Aの適用例と実測値の比較
拡張されたS.E.Aを用い実際の建物の振動伝播振動を予測計算し、実測値との比較を行った。以下にその概要を示す。

4.1 対象建物
今回計装対象とした建物は、図－5に示すRC造の11階の建物である。建物の特徴としては壁式構造で、各スパン毎に壁を有する建物であり、梁をほとんど持たない。本対象建物の構成部材の持つモード数は、板材のモード数を表す式(19)で求められる。計算結果は図－6に示す通りであり、計算対象とした周波数範囲（オクターブバンド中心周波数で63Hz～500Hz）に対して、床で5つ、壁で2つ以上のモード数を持っている。また計算に用いたパラメータは表－1に示す。

\[N = \frac{S}{2} \sqrt{\frac{m^*}{f^2}} \] (19)

\[N: \text{モード数} \]
\[S: \text{板の面積} \]
\[m^*: \text{板の面密度} \]
\[f^*: \text{板の曲げ変} \]

ここで計算は計算内容等の制約上、モデル化の範囲を平面上は建物の長手方向のみとし、階数は6階分、要素数は282要素とし、省略した構造物との境界条件を、測定時の評価点となる要素に結合している要素はすべてモデル化の対象とした。これにより評価点要素の結合損失については計算に反映される。しかし構造体全体のエネルギーフローに関しての誤差を含むこととなる。

以上の条件で、周波数毎に求めた各要素の内部損失係数（ここでは3.2に示したコンクリートの損失係数）と3.3の方法で求めた結合損失係数を用い、無体のエネルギーバラシスを表す式(8)の要素エネルギー \(E_a \)を連立多元方程式の解として求めることで、各要素の振動エネルギーを得る。

4.2 測定概要
測定は内装工事直前で実施した。加振点、測定点を図－5に示す。
加振源としては、タッピングマシンを用い、振動は加速度ピックアップ(B&K TYPE4370)とチャージアンプ（B&K TYPE2635）をセットにして建物の水平、垂直の各測定ラインについてパックレコーダー記録に記録した。記録されたデータは、FFTアナライザーにより1分間のパワーアンプ値でスペクトル分析を行い、更にこのスペクトルをパワーコードし、1/1または1/3オクタープバンドごとに振動加速振動レベルを求めた。
また各測定点での振動加速振動レベルは、インパルス加振により測定した動特点インピーダンスを用い次式に示す補正を行いない基準要素で基準化した。補正は各測定点のエネルギー比による換算とし、スペクトルの段階で実施した。
この補正により、各要素間のエネルギー比として後述の計算値と実測値との比較が行われる。

\[E_i/E_0 = (Z_i V_i^2)/(Z_0 V_0^2) = (Z_i A_i^2)/(Z_0 A_0^2) \] (20)

\[E_i: \text{要素} \]
\[E_0: \text{基準要素} \]
\[Z_i: \text{要素} \text{の} \text{インピーダンス} \]
\[Z_0: \text{基準要素} \text{の} \text{インピーダンス} \]
\[V_i: \text{要素} \text{の} \text{振動速度} \]
\[V_0: \text{基準要素} \text{の} \text{振動速度} \]
\[A_i: \text{要素} \text{の} \text{振動加速度} \]
\[A_0: \text{基準要素} \text{の} \text{振動加速度} \]

本報告では測定の際は振動加速振動による測定を行っているので、式(20)の補正は振動加速振動に対し行った。

4.3 結果
実測値と計算値との比較に当たっては、加振要因内で生じる振動加速振動のパルクの影響を除くため、各測線上で最も加振点に近い応答点を基準点とし、そこからの減衰值（相対レベル）で示す。
図－7～9に各測線の実測値と計算値の比較を示す。また式(21)に示す、伝搬距離を用いた実験式15）により計算結果も同時に示す。S.E.Aの計算値については前述の

| 表－1 計算条件 |
|---|---|---|---|
| 要素数 | 282 |
| 壁厚 | 180mm |
| 床厚 | 180mm |
| ヤング率 | 2.6×10^16N/m^2 |
| 損失係数 | 0.005, 0.01 |
| 密度 | 2,300Kg/m^3 |

15）実験式: 伝搬距離を用いた実験式（15）
実験で求めた損失係数の0.005と、損失係数の違いによる影響を検討するために0.01の2ケースについて示した。

\[L_d = P_0 - 20 \log d - 0.03 \sqrt{f} d \]

\[L_d : \text{加振点から距離の点の振動のレベル} \]
\[P_0 : \text{加振の強さを表す値} \]
\[f : \text{周波数} \]
\[d : \text{加振点からの距離（最短経路）} \]

これらの特徴として

1. 実験式による結果は、実測値の大まかな減衰傾向を表しているが、端部の反射の影響等の局部的な挙動の変化は表していない。従って加振点からの距離が違い場合や建物端部では危険側の予測結果となっている。
2. SEAの計算値は実測値に見られるような、建物端部での反射による影響と思われる振動レベルの上昇が認められる。その上昇量は損失係数が大きく、また周波数が高いほど大きくなる。
3. 損失係数の大小による違いでは、0.01の場合加振点からの距離が遠くなるに従って、また周波数が高くなる程減衰量が大きくなる。実測値と実測値が良く一致しない。一方、0.005の時は伝搬方向や周波数に関係なく全般にわたり実測値と計算値が良く一致している。

以上今回の計算では損失係数を0.005とした場合実測値との高い一致度が見られ、実測値により得られた材料単体での損失係数を用いることの妥当性が得られた。

5. まとめ

今回の計算値と実測値の比較により以下の事が明らかとなった。
1. 拡張SEAを用いることで、材料の内部損失、伝播形や伝播形の事前に求められるパラメータから、建物の伝播特性が遠方領域まで予測できる可能性が示された。特に伝播の距離による関数的な表現ではなくなかったコア部での振動の減少や、建物端部での反射による振動レベルの上昇が予測可能である。

図-7 計算値と実測値の比較（測線1）
図-8 計算値と実測値の比較（測線2）
図-9 計算値と実測値の比較（測線3）
②壁式構造の様な比較的壁の多い建物については、固体伝搬音が問題となる周波数全域にわたり、精度良く予測できることができたが、S造等の壁が少なく平面的な広がりを持つ建物への適用について更に検討を重ねる必要がある。
③今後精度の向上を図るために、モデル化方法や実測における加振要因評価方法、入力パラメータなどに改良の余地がある。

参考文献
2) 入江義彦,他: S E A法による固体音解析法,三菱重工技報Vol.21, No.4, 1984.7
8) 藤原敬司:プロッキングマスを有する結合部での固体音伝搬,日本音響学会建築音響研究会資料, AA 81-11.
10) 田中治,建築と床板の交差部における斜射曲げ波の伝搬について,日本音響学会建築音響研究会,AA 81-12, 1981
11) 安田博之,一体構造物の構型交差部における斜射曲げ波の固体音伝搬について,建築音響研究会資料, AA91-9
12) 松田由利,橘秀樹,石井聖光,建築構造物中における固体音の伝搬特性,日本音響学会誌,39巻11号(1979)
17) 橘秀樹,建築構体中における固体音の伝搬特性,日本音響学会誌,1979,6.

（1993年11月10日原稿受理，1994年5月20日採用決定）