This paper describes the results of the wind tunnel experiments concerning the effects of separation distances on flow fields around the twin high-rise building models and on concentration fields in the cavity region. From these experiments, the following conclusions are drawn. 1) The primary effect of the upwind building was to retard flow separation on the top and sides of the downwind building when the separation distance between the twin building models was less than a building height \((L/H<1.0)\). 2) The separation distance did not influence the reattachment length and cavity area behind the downwind building. 3) The flow separation on the top of the downwind building occurred when the turbulence intensities in the z direction were equal to those in the x direction. 4) The higher cavity concentrations appeared in the downwind building than those in the isolated building. It was because the mean velocity and turbulent energy in the cavity of the downwind building decreased in comparison with those in the cavity of the isolated building.

Key Words: Twin high-rise building models, Separation distance, Cavity, Gaseous diffusion, Wind tunnel experiments

1. 序

都市でツイン高層建物の建設が行われている\(^{1,2}\)。ツイン高層建物は、単独高層建物の流れと異なり二棟間で大きな循環流や風下側高層建物後流域に弱風の逆流域が形成される\(^{3}\)。一般に高層建物の熱負荷はビルのインテリジェント化に伴い増大する傾向にあり、熱エネルギー源として、エネルギーの効率を高めるためにコーポレーションシステムが採用されることが多い\(^{4}\)。コーポレーションシステムは空調化を排出するので、排気煙突が建物近傍の低層レベルに設置されると、排ガスはキャビティ内で拡散して建物近傍で空気汚染が発生する\(^{5}\)。さらに、建物壁面の外気取り入れ口から汚染空気が室内に取り入れられ、室内でも空気汚染の発生が懸念される。また、現在、高層ビル火災の消火活動にヘリコプターの利用が検討されており、消火ヘリの安全運航を図るために高層ビル周辺の風の特性について基礎資料を得る必要がある\(^{6}\)。特に、都市防災の観点から高層建物の屋上にヘリポートを設置する機会が増加しているが、隣棟間隔により建物屋上の流れは大きく変化するので、ヘリコプターの操縦時の安全性と建物屋上の剥離流との関係を明らかにすることは重要である\(^{6}\)。

2. 実験概要

（1）風洞 エッフェル型吹き出し式風洞で、測定部は長さ14m、幅1.2m、高さ1mである。風速機は直流モーターで11km。

（2）高層模型 高層模型として正四角柱の幅100mm、長さ100mm、高さ300mmの模型を選び、二棟を図-1 に示すように流れと平行に
配置してツイン高層模型を形成した。
（3）計測器 風速測定に熱線風速計（KANOMAX）2台と1288型スプリットフイルムプローブを、圧力測定には炭素水素分析計（大倉理化学研究所）を使用した。
（4）測定方法と解析方法 ①風速ベクトルスプリットフイルムプローブを回転させて各方向成分ごとに風速を測定した。平均化時間は60秒。サンプル周波数は250Hz。測定は10〜20mmの垂直断面でX, Z成分を、Z=200mm, Z=260mmで水平断面のX, Y成分を測定した。
②ガス濃度 トレーサーガスは濃度100%のエチレンガスを用い、直径17mmの球を約0.1m/sの流速で流下する。これを拡散モデルの排出条件を簡易化するために球からの排出方法を採った。建物近傍汚染のため、高濃度のガスのキャビテイ化を防止するために、トレーサーガスの排出点はキャビテイ値に限定した。測定時間は150秒。
③流線分布 市販のソフトを使い、風速ベクトル分布から流線を求めめる流線分布を作成した。
④剥離点高さ 模型の上流側から模型風上端部をかすめるようにマーカーを飛ばし、作成された流線分布より屋根面中央部での高さを垂直方向の剥離点高さと定義した。
⑤模型の発生位置 二棟間で形成された流線の巻き輪位置により模型風上部のStick区間を算出した。屋根面に沿う高さにおいては、模型の上流側から模型風上端部をかすめるように流線を作成し、作成された流線の領域で、風速ベクトルが逆流したときに、その領域をキャビテイ面積に算出した。図-1に示す。
⑥再付着点 2/H=1/8の近傍でX成分の風向きが逆に反転する点を再付着点と定義し、再付着点からの距離を再付着点までの距離と定義した。
（5）実験条件 二棟間断L/H=20, 25, 50, 0.75, 1.0, 1.5, 2.0の6タイプで、基本形状として単独高層模型の1タイプを合わせた合計7タイプについて実験を行った。軒高風速は5m/sに設定した。
（6）実験結果と考察 3.1 高層模型の流線分布に関する流線分布分析
図-5から図-7に結果を示す。水平断面の流れはX=0の風速ベクトルをY=0側に転写して流線分布を作成した。なお、流線間隔は、
流れパターンをはっきり作図するために任意に決めたので、流線密度は風速の大きさと関係しない。
①単独高層模型 図一5に示す。垂直断面の流れは風上側壁面のZ/H=2/3付近で上下に分割し、下降する流れは床面近くで逆流した。上昇する流れは風上側壁面端部で剥離し[2]、屋根面の剥離点高さはZs/H=0.093に達した。屋根面直上では逆流が発生した。剥離流は模型通過後、床表面に向かって下降し、X/H=2.50の点でZ/H=0.75まで下降した。流は模型上部のX/H=0.21、Z/H=0.87付近で渦の中心が形成された。再付着点はX/H=0.35に発生した。キャビティ面積はAρ/λ=1.36で、空間の流点はX/H=0.48、Z/H=0.58に発生した[19,20]。
図一5 (2) に渦中心が形成された高さZ/H=0.87の水平断面の流れを示す。Yの全域でマーカーを飛ばして流線を作成したので、流線分布は厳密にY軸対称にならなかった。模型後流域では二つの渦が形成された。側壁面近傍でも屋根面直上では同様に逆流が見られた。
②L/H=0.5 図一6 に示す。垂直面では二棟間のZ/H≧0.50の領域では風上側壁に向かう大きな循環流れが形成され、その中心は風上側壁寄りのXe/H=0.18に存在した。Z/H=0.5でも流れは風上側壁に向かったが、循環流は形成されず、再付着点は二棟間で発生しなかった。風上模型屋根面で剥離した流れは、風下模型屋根面で屋根面に平行に流れ、屋根面風上側部で剥離流を形成しなかった。従って、風下模型屋根面風上側面では逆流が生じなかったので、風下模型後流域のキャビティ面積は単独高層模型に比べて28%減少した。キャビティの境界面は模型壁面に平行に分布し、空間の流点は明確でなかった。
平面面の流れは二棟間ではっきりした渦が形成され、渦の中心は風上側壁寄りに存在した。風上模型の風上側壁で生じた剥離流は、二棟間域に流入せず風下模型の側壁にそって流れた。風下模型側壁面近傍で剥離流の形成はみられなかった。風下模型後流域のキャビティ面積は二棟間のキャビティ面積に比較して減少した。また、図一5に示した単独高層模型のキャビティ面積で比べても、風下模型キャビティ面積は減少した。従って、ツイン高層模型の風下模型に形成されるキャビティブ領域を3次元的にみれば、キャビティ容積は単独高層模型に比べてかなり減少したことになるので、容積の減少はキャビティ壁の污染ガス拡散に影響を及ぼすと考えられる。
③L/H=1.0 図7 に示す。垂直面の流れでは、風上模型屋根面で
剣離した流れは風下模様の屋根面端部で上方に剣離したが、直ちに屋根面に平行に流れれた。その後、流れは地表面に向かってやや下降した。単独高層模様後流域の流線分布と比べて剣離流線の下降幅は小さかった。二棟間では、風下模様の風上側壁面にそって下降した流れは\(X/H \approx 0.77\)付近の地表近傍で渦を形成するだけで、風上模様まで到達する剣離流は形成されなかった。再付着点は\(Xr/H \approx 0.55\)付近に生じた。

水平面の流れでは、風上模様端部で剣離した流れは二棟間域に流れた後、風下模様端部で再び剣離した。剣離流高さは風上模様側壁面の剣離流高さに比べて小さかった。風下模様後流域の流れパターンは\(L/H=0.5\)と同様なパターンを示した。

3.2 二棟間域の流れに関するマクロ的検討

数値モデル作成の観点から二棟間域の流れを剣離流の発生位置、流れの再付着点、及びキャビティ面積について検討した。

（1）剣離流の発生位置 図-8に示す。\(L/H \leq 0.75\)まで\(Xe=0.5H\)に比例し、\(L/H \geq 1.0\)で逆比例。単独高層模様キャビティ域の高は\(Xe=0.21\)の点に発生したが、ツイン高層模様では、\(L/H \geq 0.75\)のとき風上模様から最も離れれた位置に発生した。発生位置は風上模様屋根面近傍の圧力変化を示して二棟間の風上模様側に形成された。

（2）再付着点 図-9に示す。風下模様壁面まで達する剣離流は\(H/L \leq 0.75\)の領域で形成された。\(L/H \geq 1.0\)では風下高層模様の屋根面を下降する気流と水平方向から流入する気流により二棟間全体をわたる剣離流は形成されなかった。従って、再付着点は\(L/H \geq 1.0\)で生じ、\(L/H \geq 1.5\)で\(Xr/H \approx 0.37\)となった。

（3）キャビティ面積 図-10に示す。図-8と同様に\(L/H \leq 0.75\)までキャビティ面積は\(L/H\)に比例した。\(L/H \geq 1.5\)で\(Ar/Ao\)は一定になった。キャビティ面積の計算は、\(L/H \leq 0.75\)では、風下高層壁面に達する剣離流が形成されたので、風上模様の剣離流線で囲まれた風上模様屋根面近傍域と二棟間域を合わせてキャビティ面積を算定した。\(L/H \geq 1.0\)では、図-11に示すように二棟間の再付着点から渦を通って風上模様屋根面まで達する曲線と風上模様とで囲まれた領域、及び屋根面近傍の逆流領域を合わせてキャビティ領域とし、二棟間域のキャビティ面積は\(H/L \leq 0.75\)のときに最大を示した。

3.3 風下高層模様屋根面近傍域の剣離流に関する検討

ヘリコプターの離着時の安全性、及び風下模様キャビティ域形成との関係から屋根面端部の剣離流形成について検討した。

（1）剣離流高さ 図-11に示す。剣離流は\(L/H = 1.0\)から生じ、剣離流高さ\(Za=0.5H\)に比例した。\(L/H=2.0\)で\(Za=0.063\)になった。ただ、屋根面直径の\(Z/H=31/30\)で詳細に風速ベクトルを測定したが、\(L/H=2.0\)でも屋根面後端部で逆流は生じなかった。風上模様の剣離流高さは二棟間域によりらず\(Za=0.094\)を示した。

（2）屋根面風上限部の剣離流の風向角、合成風速、及び乱れの強さ 図-12から図-14に示す。測定高さは\(Z/H=31/30\)。風の風向角を合成風速を\(L/H\)に比例した。\(L/H<0.62\)で剣離流の風向角は負で、\(L/H \geq 0.62\)から正に転じた。図-14の乱れの強さは、剣離流が発生しなかった\(L/H=0.25\)のときにX成分はZ成分よりも大きく、\(L/H \geq 1.5\)でX成分とZ成分はほぼ同じ大きさになった。従って、合成風速が大きくなり、また、X成分とZ成分の乱れの強さが同じ大きさ

NII-Electronic Library Service
になる。屋根面風上端部で剥離流は生成された。
（3）測定点高さZ/H=31/30の風向角、合成風速、及び乱れの強さの分布に関する空間分布
図-15から図-17にL/H=2.0の分布を示す。図-15から風上型の風下端部X/H=1/3の風向角は45°で、直後の屋根面で風向角は反転し、流れは逆流した。風下模型に近づくと風向角は増加し、X/H=2.0の風下模型屋根断面で32°になった。しかし、その後の同じ屋根面で風向角は変化したが、逆流は生じなかった。図-16の合成風速分布は風向角分布と同様な分布を示し、模型風下端部のX/H=1/3とX/H=2.00の点で合成風速は増加した。図-17の乱れの強さの分布では、剥離流を生じた高度模型の風上端部でX成分とZ成分はほぼ同じ大きさになった。従って、剥離流の発生に合成風速と乱れの強さが深く係わっていることが判った。

3.4 風下高層模型キャビテーションの流れに関するマクロ的検討
仮想模型を作成の観点からキャビテーションの流れの特性をマクロ的に記述する再付着長さ、キャビテーション面積、及びキャビテーション中央点の乱流エネルギーと合成風速について検討した。
（1）再付着長さ　図-18に示す。再付着長さは二棲間隔によらずにx/H≈0.3とほぼ一定になった。
（2）キャビテーション面積　図-19に示す。キャビテーション面積は再付着長さを同じ条件で二棲間隔の影響を受けず、Ar/Ao＝0.94と一定であった。L/Hが大きくなると風下模型の屋根面風上端部で剥離流が形成されるにも係わらず、屋根面後端部で逆流現象は生じなかったので、風下模型後端部の流れは二棲間隔によらず屋根面後端部しか剥離しなかった。なお、L/H=2.0ではキャビテーションを測定できなかったのでキャビテーション面積を算定しなかった。
（3）キャビテーションの乱流エネルギーと合成風速　乱流エネルギーと平均風速は乱流ガス量に影響を及ぼすので、キャビテーション中央点のXs/H=1/6、Z/H=1/2で検討した。乱流エネルギーは測定値のないものをV_{0}^{2}×0.5（m/s）と仮定して計算した。進近流のY成分の乱れの強さはX成分とZ成分の間にあるので簡略的に乱流エネルギーを定義した。図-20の乱流エネルギーは二棲間隔の影響を受けずV_{0}^{2}×0.028を示した。単独高層模型の同じ点に比べて、ツイン高層模型の乱流エネルギーは35%減少した。図-21の合成風速は、二棲間隔によらずにV_{0}/U=0.16と一定で、対応する単独高層模型の0.24に比べて減少した。単独高層模型に比べてツイン高層模型ではキャビテーションの乱流エネルギーと合成風速が減少するので、これらの減少はキャビテーションの乱流ガス濃度の増大に寄与した。
以上の図-18から図-21までの結果から、風下高層模型キャビテーション空間は二棲間隔によらず気流状況がほぼ同じ仮想空間と予想される。

3.5 風下高層模型キャビテーションの乱流ガス拡散に関する検討
キャビテーションの拡散特性を二棲間隔、トレーサーガスの排出高さ、模型形状の影響等について検討した。
（1）二棲間隔の影響　図-22に風下壁面垂直濃度分布を示す。トレーサーガスの排出点はキャビテーション中央点のXs/H=1/6、Z/H=0.5の点、最大濃度は単独高層模型で1、ツイン高層模型のL/H=0.5で97なので、ツイン高層模型では単独高層模型と比べて高い濃度場を
形成した。また、ツイン高層模型ではL/hが大きくなると最大濃度はやや減少したが、全体の濃度分布はほぼ同じ形を示した。従って、風下壁面濃度に及ぼす二棟間隔の影響は小さいと判断される。

（2）排出点高さの影響
図23に示す。L/H=1.0でトレーサーガスの排出点高さだけを変化させた。最大濃度の発生高さは異なるが、Zs/h≦0.3では濃度分布は全体としてかなり相似な分布を示した。従って、ツイン高層模型のキャビティ域でトレーサーガスの排出点を、模型壁面から同じ距離を保つながら1/6≦Zs/h≦0.5の範囲で変化させても、風下壁面濃度に及ぼす影響は小さいとの判断される。

（3）空間密度分布
図24にEPA（米国環境保護庁）研究所で筆者らが行った風洞模型実験の空間密度分布を示す[5],[6],[7]。図は文献[5]と[12]から引用した。模型は今回の模型と相似で、模型高さは600mm、接近流のべき指数は0.3、境界層厚さ1800mmで実験した。ツイン高層模型の二棟間隔はL/H=1/6、Z/H=1/12である。ツイン高層模型の壁面濃度は、単独高層模型に比べて風下壁面濃度が大きく、側面壁面濃度は小さかった。原因として、風下壁面濃度については、単独高層模型に比べてツイン高層模型キャビティ域の合成風速、乱流エネルギー、及びキャビティ容積が減少するために、トレーサーガスがキャビティ内で排出されるガス拡散はキャビティ容積内で行われる結果、ツイン高層模型の風下壁面濃度は単独高層模型に比べて大きくなくなったと考えられる。側面壁面濃度については、風下模型の側面壁面近傍で逆流現象を生じなかったので、単独高層模型に比べて濃度は減少した。

（4）正規型拡散モデルの近似精度
壁面濃度χ(Z)を次式の正規型拡散モデルχ_e(Z)で近似した[11],[12],[13]。

\[
χ_e(Z) = χ_{max} \times \exp\left(-\frac{(Z-Z_{max})^2}{2 \sigma^2}\right)
\]

χ_max : 最大濃度、σ : 拡散幅、Zmax : 壁面最大濃度の発生高さ
図22に近似曲線を記入した。近似式は最大濃度の発生高さと最大値を式(1)に与えて拡散幅を回帰したので、最大濃度付近の分布を良く近似できたが、低い濃度での近似精度は低下した。全体の近似誤差を次式のεで定義する。

\[
e = \frac{\sum |χ(Z) - χ_e(Z)|}{\sum χ(Z)}
\]

図22の近似誤差は単独高層模型24%、ツイン高層模型のL/H=0.5で24%、L/H=1.0で31%であった。

正規型拡散モデルは地形の影響のない大気拡散式から導き出されたもので、キャビティ内の気流の影響で非対称の壁面垂直濃度分布になる模型後流拡散に正規型拡散モデルを使用するのは難しい[12]。また、拡散幅と最大値は模型条件に大きく影響されるので[20]、今後、模型条件の影響を考慮した模型後流拡散モデルを検討する必要がある。

4. 結語
ツイン高層建物周りの流れとキャビティ域の拡散に及ぼす二棟間隔の影響を風洞模型実験で検討した。本研究の結果をまとめると以下のとおりである。

（1）二棟間の稀薄流はL/H≦0.75のときに形成された。L/H≧1.0では風下高層模型の風上壁面を下降する気流と水平方向から流入する気流により二棟間全体にわたる稀薄流は形成されなかった。

（2）風下高層模型高層風上壁面の流れの剥離現象は、剥離流れがL/H≧1.0で生じ、L/H=2.0のときに剥離流れがZs/h=2。
実験を行った加藤、花房、日比、有沢、建物風下側における気流の分布（風洞実験）、日本建築学会論集、55、27-28、1993
2）飯塚他、自然換気と放射状冷房を利用したアトリウムの夏季自然冷却、日本建築学会論文報告集、636-639、1996
3）Y.Tanaka, Interference mechanism for enhanced wind forces on neighboring tall buildings, J. Wind & Industrial Aeronomics, 41-44, 1073-1083, 1992
4）空気調和・衛生工学会誌、都市ガスによるコージェネレーションシステム計画・設計と評価、1994
5）大気、ツイン高層建物下風側の排ガス汚染に関する風洞模型実験、日本建築学会大会学術講演論文集、第9-100、1994
6）大気、ツイン高層建物周りの流れ場と濃度場に関する風洞模型実験、第36回大気環境学会年会講演論文集、1995
7）中野、大気、ツイン高層建物模型近傍の流れとキャビテーションの形成に関する風洞模型実験、日本建築学会大会学術講演論文集、581-582、1996
8）日比、花房、加藤、建物側面の変動風速の性状、消火・安全設計のための実験と風洞実験、日本建築学会、55、25-26、1993
9）内海、花房、関、stück、高層建物仮上部に設置するヘリッタ製近傍の気流特性に関する研究、第10回風工学会シンポジウム、265-270、1988
10）大司、R.E. Lawson, W.H. Snyder、ツイン高層建物周りの流れ場に関する風洞模型実験、第13回風工学会シンポジウム、67-72、1994
11）大司、ツイン高層建物の流れ場に関する風洞模型実験、その2、二棟建物の影響、第14回風工学会シンポジウム、109-114、1996
12）M. Ohba, W. Snyder, R. Lawson, A. Huber, Wind tunnel experiments and numerical simulations about the flow and concentration fields around twin high-rise buildings with a district heating plant, The Academic Reports The Faculty of Engineering Tokyo Institute of Polytechnics, 16, 1, 86-98, 1993
13）村上、小建築模型風洞実験による変動風速の三次元的　な測定、日本建築学会論文報告集、297、60-69、1989
14）中野、大司、単独高層模型後風側の流れと汚染ガス拡散に関する風洞模型実験、日本建築学会大会学術講演論文集、635-636、1995
15）E. Plate, Engineering Meteorology, Elsevier, 481-525, 1982
16）U.S. Energy, Atmospheric Science and Power Production, NTIS, 241-326, 1984
17）伊藤、村上、加藤、小林、不完全混合室内の居住域換気効率の評価に関する研究、その2、流れ場、気流の分析、居住域PFRの検討、日本建築学会論文報告集、561-562、1996
18）大司、建物仮上部の汚染ガス拡散に及ぼす建物周辺近傍の流れの影響に関する実験的研究、大気環境学会計測論文報告集、406、21-30、1989
19）Davies, The near wake of a tall bldg block in uniform & turbulent flows, 5th Int. Conf. Wind Engr., 289-290, 1979
20）W. Snyder, R. Lawson, Wind-tunnel measurements of flow fields in the vicinity of buildings, 8th Int. Conf. on Applications of Air Pollution Meteorology with A&WMA, 244-250, 1994
22）横山、林、足立、環境アドバイザー制度導入に、オーム社、1975
23）原篤、高層建物風下拡散モデルについて、大気汚染学会会報、27, 2, A25-A36, 1992
(1996年9月10日原稿受付、1997年1月30日採用決定)