熱源システムの最適運転による室温湿度変動とそのシステム構成が
最適化効果に与える影響
—夏季代表日における中規模事務所ビルの複合熱源蓄熱システムを対象とした基礎的検討—

INDOOR AIR TEMPERATURE AND HUMIDITY FLUCTUATION UNDER
OPTIMAL OPERATION OF HEAT SOURCE SYSTEM AND EFFECT OF
SYSTEM COMPOSITION ON THE OPTIMIZATION RESULTS

赤司 奏*1, 渡辺俊行*2, 龍 有二*3, 松尾 陽*4, 高橋 淳一*5
Yasunori AKASHI, Toshiyuki WATANABE, Yuji RYU,
Yoh MATSUO and Jun-ichi TAKAHASHI

The purpose of this paper is to clarify the following two points. First point is the indoor air temperature and humidity fluctuation under an optimal operation of heat source system. Second is the effect of the system composition (heat source equipment capacity ratio) on the optimization results. Method for the optimization is applied to the hybrid energy source system with thermal storage ratio of a middle scale office building on a certain summer day. The results are as follows: 1) the suitable change of the room temperature is calculated automatically by optimization process, so there is possibility of realizing effective energy conservation etc. by more active control of the temperature. 2) the relation between heat source equipment capacity and building heat load influences its suitable ratio, and the ratio influences the achievement degree of the optimal operation effect considerably. According to a trial calculation, it is surmised that the system with a few heat source equipment using various energy is advantageous for pursuing energy conservation etc.

Keywords: Optimal operation, Hybrid energy source system with thermal storage tank, Indoor air temperature and humidity fluctuation, Heat source equipment capacity ratio

1. はじめに

例えば、蓄熱槽などの熱的挙動の時間遅れが無視できない要素をもつ空調システムの省エネルギー率を用いるプログラム設計・校正数値計算において、その最小化を図るようなセダナニックな最適化が必要になる。空調システムの最適運転計画に関するこれまでの研究では、その最適化手法に動的計画法を利用して示すことが多く、状態変数や操作変数の次元数が多くなると計算量が爆発的に増加し、実際的空調システムへの適用が困難になる。筆者らは既報において、次元数の制限を効果的に受けにくい次元パラメータ変化法を最適化手法に取り上げ、それを実在施設に導入されている複合熱源蓄熱システムに適用し、省エネルギー＝電力負荷低減化などを目的とした運転計画の最適化効果について明らかにしたが、この最適化手法も目的関数における多峰倉への対応や検出器の設定の難しい問題に問題を残している。

一方、これまでの研究の延長上に予想される課題に、建物内、熱源装置の実用で複合システムへの適用拡張システム設計上、フィードバックがあげられる。従来、熱源装置が処理すべき熱量を実測や計算で別途求め上げ、それを入力とする熱源システムに検討範囲を限定する場合が多い。実際、室温湿度は空調システムの運転結果として記録する状態量と捉えられるので、それらを最適化計算の条件変数とし、設定室温などは拘束条件として扱うことで、装置運転システムにおいて示される予冷・予熱の概念も含めた室温湿度のより柔軟な検討が可能となる。また、最適運転計画効果はシステムの構成に大きく依存するので、空調システムの「最適運転」と「最適設計」とを包括した一般的な検討が必要となる。

本稿は既報と同様、空調システムの省エネルギーや電力負荷低減化を推進する際の「最適化」の有用性を把握することを目的とするもので、最適化計算をトータルシステムに適用する手法の展開を示し、最適運転計画による室温湿度変動を明らかにする同時に、そのシステム構成が最適化効果に与える影響についてシミュレーションによる基本的な検討を行っている。ただし、最適化手法の実用上の制限とトータルシステムという適用範囲の拡大により、計算期間を夏季代表日の 1 日に限定させざるを得なかった。また、計算対象は中規模事務所ビルの複合熱源蓄熱システムを想定し、システム構成のパラメータもその熱源装置容量との適切な選択を考慮したに過ぎない。今後、豊富なシミュレーション基盤「最適化」に対する一般的な結論を提出することが必要と考えるが、本稿の内容は、前述した課題への取り組みも視野に入れた研究の初期段階として位

*1 九州大学大学院人間環境学研究科 助教授・博士(工学)
*2 九州大学大学院人間環境学研究科 教授・工博
*3 九州大学大学院総合工学研究院 助教授・工博
*4 明治大学工学部建築学科 教授・工博
*5 大成建設㈱ 企画
Assoc. Prof., Graduate School of Human-Environment Studies, Kyushu Univ., Dr. Eng.
Prof., Graduate School of Human-Environment Studies, Kyushu Univ., Dr. Eng.
Assoc. Prof., Interdisciplinary Graduate School of Engineering Sciences, Kyushu Univ., Dr. Eng.
Prof., Dept. of Architecture, Faculty of Engineering, Meiji Univ., Dr. Eng.
Taisei Corporation, M. Eng.
2. 計算モデル

図1に計算モデル概念図を示す。熱流体システムモデルとエネルギー消費量の計算法方法については既報と重複するので割愛する。

2.1 建物系モデル

室温湿度を最適化計算の状態変数に考える場合、除去熱量と室温湿度の因果関係を平易な形でモデル化しておくことが望ましい。本報では、顕熱と潜熱に分離した式(1)の熱負荷モデルを考えた。記号は本報末尾を参照頂きたい。

\[
Q_{s1} = B_{s1}(z)\Delta T_1 + [B_{s2}(z)A(z)]\Delta T_2 + B_{s3}(z)J_1 \\
Q_{s2} = B_{s4}(z)A(z)\Delta T_2 + [B_{s5}(z)A(z)]\Delta T_3 \\
A(z) = 1 + az^z, A(z) = 1 + az^z, \\
B_{s1}(z) = b_{s1} + b_{s2}z + b_{s3}z^2, \\
B_{s2}(z) = b_{s2} + b_{s3}z + b_{s4}z^2
\]

図2、図3、表1に基づいてHASP/ACLD/8501で計算される時刻別の熱負荷と室温湿度および外気気象データを熱負荷モデルの入力値にあたつ、モデル化する方法をシステム内定義手順により導出する。さらに、図4の室内発熱スケジュールによる熱負荷を別途計算しており、それを式(1)による熱負荷を加算して室全体の熱負荷を算定する。すなわち、ここでの計算条件はモデル化する同定に必要となる熱負荷モデルの入力値データを生成するのものであり、後述する最適化計算では、式(1)の熱負荷モデルと室内発熱による熱負荷および外気気象条件のみが用いられ、その際には、HASP/ACLD/8501の倍数展開の概念に同様に、この基準階の熱荷負荷モデルが他階にもそのまま適用できるとし、熱流体システム全体の装置容量（表7参照）とのバランスを考えて、建物全体と

図1-1 計算モデルの概念図

図2-1 計算対象室（単位：mm）

図3-1 体価表（数値は断面厚さm、熱物性値は参考文献8に準拠）
2.2 空調系モデル
計算対象室を1台のエアハンドリングユニットで行うものとするとが、加熱コイルや加湿装置、全熱交換器などは除し、冷却除湿コイルのみをモデル化する。モデル化の際には以下の仮定を設けた。
①給水ファンとコイル通過におけるリク風量は見込んでいない。
②ファンによる発熱およびダクトからの熱損失は考慮しない。
③定風量方式とし、ファンの消費電力はエネルギー消費量の算定に含まない。
④コイルは空気-水の間冷式熱交換器を想定する。
⑤コイルにおける乾燥と湿りの共存状態を考えない。
コイルにおける空気と冷水の出入口温度の関係を図-6に、コイル通過空気の状態変化を図-7に示す。ここで必要なことは空気と冷水のコイル入口状態量からそれらのコイル出口状態量を求めることがである。まず、コイルのバイパスフロータをコイル仕様と空気流量から式(2)により求める。

\[B = \exp\left(-\frac{\alpha S}{5.6 \times 10^6 C_a G_a}\right) \]

次に、コイル出口空気温度のある値\(\bar{T}_{A2}\)に仮定し、図-7から導かれる式(3)からコイル出口空気湿球温度の仮定値\(\bar{T}_{A52}\)を計算する。

\[\bar{T}_{A52} = \bar{T}_{A2} - (T_{A11} - T_{A15}) \]

一方、コイル出入口空気のエンタルピー変化と湿球温度による顯熱成分の変化の比は式(4)で表せる。

\[\xi = \frac{(H_{A11} - H_{A15})}{C_a(T_{A11} - T_{A15})} \]

よって、熱交換における2液体間の温度効率はコイル仕様および空気と冷水の流量から式(5)で求められる。

\[\phi = \frac{[1 - \exp(-\phi'(1-\gamma)]/[1 - \gamma \exp(-\phi'(1-\gamma)])}{\xi C_a G_a / \xi C_a G_w} \]

\[\phi' = \frac{(T_{A11} - T_{A15})}{(T_{A11} - T_{A15})} \]

さらに、温度効率は空気と冷水の出入口温度からも算定でき、それを\(\phi'\)とすれば式(6)で表せる。

\[\phi' = \frac{(T_{A11} - T_{A15})}{(T_{A11} - T_{A15})} \]

本項の\(\phi'\)と\(\phi\)は一致すべきものであるので、両者の差の絶対値が十分小さくなるようにはじめの仮定\(\bar{T}_{A2}\)を収束させる。\(T_{A2}\)が求めれば、コイル出口の空気温度とエンタルピーからその空気の絶対温湿度を計算できる。必然的にコイル出口の水温も求めることができる。すなわち、空気と冷水のコイル入口状態量からコイル出口状態量が算出できることになる。以上、湿りコイルの場合の計算手続きを述べたが、これは乾燥コイルにもそのまま適用でき、その場合は計算過程で\(\phi = 1\)となる。コイル外表面熱伝達率については、乾燥コイルと湿りコイルで区別し、以下の実験式で与える。

\[a_{dry} = 0.15 \times 10^{-6} A \sqrt{V_A} \times 10^{-6} \times d^2 \]

\[a_{wet} = 0.041 \times 10^{-6} A \sqrt{V_A} \times 10^{-6} \times d^2 \]

（7）

冷却除湿コイルの仕様を表-3に、伝熱係数を図-8に示す。伝熱係数はカタログから適当な冷水流速間で値を読み取り、その間の値を線性補間により求めた。

[図-5 HASP計算値と同定した熱荷荷を東京大学酵素学研究所付属機械工学研究所による計算値

[図-6 冷却除湿コイル概念図

[図-7 湿りコイルの空気状態変化

[図-8 伝熱特性（冷却時、コイル正面風速2.12m/s）]
3. 最適化計算の方法

3.1 室温温度とエネルギー消費量の計算方法

2.節で述べた建築系モデルと空調系モデルを組み合わせて室温温度を計算する。今、空調時間帯の当該時点の室温温度を仮定し、コイル入空気温湿度を室温から換気と外気との混合空気として求める。

2.2 節の方法により、空気と冷水のエネルギー消費量からそれぞれのエネルギー消費量を算出されるので、コイルの出入口空気温湿度差と風量により外気除去率、潜熱消費量が求められる。一方、除去熱量は熱負荷モデル（2.2節（1））の応用に相当し、産業の除去熱量が一致するように繰り返し計算により室温温度を求め、

4.2 計算時間帯の室温温度と除去熱量は従来の設定室温温度という概念とは関係なく、熱源システムの操作量が設定される。このことを非空調時間帯の室温温度が設定（1）で除去熱量を0とすれば良い。

熱源システムのエネルギー消費量は、コイル出風冷凍とバイパス流量がレギュレーションで混和し、その冷凍が熱源システムへ還ると考え、既報に示された方法により計算される。エネルギー消費量には、熱源機器本体の以外に補助器、蒸気冷_system_ポンプ電力、冷却塔ファック電力が含まれるし、機器の立ち上がり特性やポンプ熱、管路損失については考慮しない。

建築系、空調系、熱源系のすべての系について熱的にはバランスさせる。

3.2 最適化手法と計算条件

各運転計画における操作変数、操作範囲、最小操作量を表-4に、取り上げた運転計画を表-5にまとめる。最適化手法には直接法の一つである松田・ペラメータ変換法を用いた。バイパス流量に関する操作変数は熱源システムからの冷凍冷量に対するバイパス流量の比と考えた。最適化計算における拘束条件は以下の通りである。

①操作量は設定した操作範囲（表-4）を越えない。
②熱源機器やポンプ、ファンの部分負荷率1を越えない。
③室使用時間帯は9～20時とする。
④室使用時間帯の室温は24℃を超えない。
⑤室温度の拘束条件は設定しない。室温度は同じ時とする。

3.1 節で述べたとおり、熱源システムの操作条件によって室温温度が求められるので、室使用時間帯に室温が24℃を超えるような運転計画は最適化の過程で断片的に設定される。言い換えれば、非室使用時間帯では非空調である必要をなく、その時の室温温度何が実現されてよいということになる一方、一般的な務務所ビルでも夏季冷房時で室温温度調整する場合が多いので、室温度の拘束条件は特に設けないこととした。また、室使用時間帯の室温が24℃を超えないという状況は、現在の社会の条件から考えると若干低すぎるかもしれないが、既報で取り上げた実在建築の設定室温がほぼ24℃であったこと、本報の熱源システム設計値（表-7）が実在建築に導入されているものであること、本報の主な検討内容としてその相対的評価を重視したこと、などによるものである。

給気条件、空調熱源バスの熱源消費量を変化させることで、建築系が熱源消費量を最適化する。このとき、建築系で作動する冷房装置の性能を考慮し、冷房装置の性能比を最大とし、建築系で作動する冷房装置の性能を考慮し、冷房装置の性能比を最大とすることが求められる。冷却塔の性能比はガス冷房冷凍発生機の装置容量比に同じものとし、ガス冷房冷凍発生機の装置容量比に同じものを設定した。
4. 最適運転計画における室温度変動とシステム構成が最適化効果に与える影響

本報の主な内容は、熱源システムの運転計画を最適化した場合の室温度変動について明らかにし、そのシステム構成が最適化効果に与える影響について検討するものである。最終的には、室の運転方式や、熱源装置の動作状態の影響を考慮した最適運転計画が提案される。以下、最適化計画を提案する手法を示す。

4.1 室温度変動

運転方式がCASE1で、熱源装置容量比がNO.1、NO.5、NO.9の場合の熱源装置処理熱および室除去熱量を図-9に、その時の室温度変動（NO.1〜NO.9）を図-10に代表的に示す。既報でも示したように、最適化された熱源装置の運転計画は各運転方式で異なり、その実現される室温度変動の違いは運転方式や熱源装置容量比に大きく依存するものであった。

まず、共通している特徴は、室使用時間帯の室温が24℃以下の運転方式で室温を維持する一貫点があげられる。これは、1次換算エネルギー消費量を小さくするために熱源装置の運転熱量を最小限にするという運転が選択された結果である。一方、8時、12時、15〜20時の室温が21〜23℃と低い値を示しているが、8時という時刻は室使用時間帯ではないので、室温に関する構成条件は示されていない。8時という時刻の扱いを考慮すれば、熱源装置の停止し、室温が自然室温となることも考えられるが、1日単位の最適化を考えた場合には、むしろ室内発熱量がなくなる熱負荷の小さな時刻にある程度室温を冷やしておく、建物全体の蓄熱機能を利用してその時刻以降の熱源装置の運転熱量を小さくする方が結果的に1次換算エネルギー消費量を小さくできるということを示している。この運転は空調開始時にすでに設定室温にするという通常の運転とは異なり、最適化計算の過程で適切な運転方法が自動的に選択されたと考えられる。12時以上の室温低下もこれと同様に解釈できる。また、15〜20時の室温低下は、熱源装置の停止ば熱源装置が24℃を超えていまし、最適化された熱源装置を稼働させても、この時間帯の熱負荷が小さいためにもう一度に室温低下が避けられたと考えられる。

12時や15〜20時の運転計画については、これらの時間帯が室使用時間帯であること考慮すると室温が最低値になる評価にもなり、1次換算エネルギー消費量を小さいとする代償として室の快適性が損なわれていると考察される。これは、室温の拘束条件が下限
値を設けていないことに起因するものであるが、上限値と下限値の両方を指定すると最適化手法である逐次パラメータ変化法の検索出発点の設定が非常に難しくなる。この点は逐次パラメータ変化法の短所であり、今後、改良を加えていく必要がある。いずれにしても、室温温度を従来の設定温度のように固定的な条件を与えるのでではなく、それらをより積極的に制御することによって省エネルギーやといった目的が効果的に実現できる可能性がある。

4.2 熱源装置容量比と目的関数の評価

図-11に各運転方式の熱源装置容量比（NO.1 NO.9）における1次換算エネルギー消費量日間積算値、従量金日間積算値、ピーク電力を示す。図-11(a)、(b)、(c)の縦軸は、1次換算エネルギー消費量日間積算値、従量金日間積算値、ピーク電力それぞれについて最大値を小さいものを1とし、それぞれに対する相対値を表示している。図中マーク説明文の(1)内数値は相対値1のときの絶対値である。

図-11をみると、運転計画の最適化を行っても、熱源装置容量比の違いによって、1次換算エネルギー消費量日間積算値、従量金日間積算値、ピーク電力はそれぞれ1.0〜1.2倍、1.0〜1.3倍、1.0〜3.0倍程度の影響を受ける。特に、ピーク電力については熱源装置容量比の影響が大きい。そして、いずれの運転方式でも、空調熱源ヒートポンプチラーと蓄熱槽が支配的であるほど1次換算エネルギー消費量日間積算値と従量金日間積算値は小さくなり、逆に、ガス焚き冷温水発生機が支配的であればピーク電力は小さくなる傾向がある。従量金の低減効果は蓄熱システムの割合が大きいために、電力負荷低減化の効果はガス焚き冷温水発生機の割合が大きいほど効果である。この結果は、「最適設計」なしに先駆的なものから前向きのように当然のことではあるが、これが夏季代表日だけではなく期間的な評価においても当てはまるはずだからである。建物で発生する熱負荷と熱源システム全体の装置容量をバランスさせるため、ここでは建物基準階が8層あるものとして計算しており、いずれの運転方式、熱源装置装置容量比においても、各熱源機器は全負荷運転に近い運転を行っている。すなわち、熱源機器そのものがエネルギー消費特性に依存するところが大きく、運転計画の自由度が少ない状況を示していると考えられる。

そこで、略ではあるが、基準階の8層を5層に変更し、仮想的に熱負荷の小さい日を想定して、同様の計算を行ってみた（図-12）。図-12の場合、1次換算エネルギー消費量や従量金、ピーク電力明かな谷底が見られる。これは熱負荷が小さくなったことで熱源機器が管理する熱量も小さくなり、例えば熱源装置容量比によっては空調熱源ヒートポンプチラーを運転しなくても蓄熱槽とガス焚き冷温水発生機が対応できるような状況ができたことによると考えられる。この場合は、省エネルギー化従量金の低減を図るのであればNO.1 NO.3が適当であり、電力負荷低減化を目的とすればNO.1 NO.2は避けた方が良いということになる。

図-11と図-12より、最適運転計画による効果を有効に発揮しける熱源装置容量比は建物熱負荷の大きさに左右され、システム構成を最適化する際の期間評価の必要性が再認識された。本節の内容は、非常に限られた算定の域を越えるものであるが、冷房期間内最大負荷が生じる日数は、一般にはそれほど多くないことを考慮すれば、除去熱量のすべてを1種類の熱源機器で賄うシステムよりも、異種エネルギー源による多層の熱源機器を目的にしたバランス良く設置したシステムの方が、省エネルギー化とランニングコストの低減、電力負荷低減化を総合的に推進していくことができると推察される。

5. まとめ

本稿では、建物系を含むトータルシステムに最適化手法を適用し、
熱源システムの運転計画は最適化した際の室温振動度変動とそのシステム構成が最適化効果に与える影響に関して、中規模事務所ビルにおける複合熱源熱システムの夏季代表日を例に基礎的検討を行った。本報で得られた主な知見を以下に示す。

(1)最適化計算を熱源系だけではなく建物系、空調系、搬送系を含むトータルシステムに適用する際の手法を提示した。
(2)熱源システムの最適運転計画により、室温使用開始前の8時と室内発熱量の小さい12時には室温を常温にして運転が選択された。一般的な事務所では空調時の室温目標値を固定的に扱うことが多いが、それらをより効果的に制御することでも省エネルギーを図った目的が効果的に実現できる可能性がある。
(3)複合熱源熱システムで夏季代表日の場合、各運転方式の最適運転計画効果が熱源装置容量比によって受ける影響は、1次換気エネルギー消費量目積算の、取扱量目積算の、ピーク電力で約1.0〜1.2倍、1.0〜1.3倍、1.0〜1.5倍程度となる。システムの構成内容が運転計画の最適化効果を与える影響は大きい。
(4)運転計画の最適化効果が十分に得られる熱源装置容量比は建物熱負荷の大きさに左右され、最適換気における換気量の重要性を確認されたが、本報の描かれる異種エネルギーによる換気の熱源装置を目的にしているバランスが良いと構築したシステムが省エネルギー電力負荷対応的総合的推進に有効であることが推察できた。
(5)省エネルギー電力負荷対応を推進するには、事務所の運用管理だけでなく、設定空調の与え方やシステム構成も慎重な配慮が必要であり、それらの検討における「最適化」という手段が十分有用であるとの見通しを得た。将来的には工学的判断に基づく実用的な最適化手法の開発が不可欠である。

記号
式(i)/φ : 温度効率, Cw : 冷水冷却比[kJ/(m²・°C)], (Cw =4180),
Gw : 冷水流量[m³/h], K : 単位コイル面積当たりの伝熱面積[W/(m²・°C)], F : コイル面積[m²], R : コイル数, Pt,w : インロップ・出口冷却水温度[°C]。
式(ii) / d = 乾燥指数・湿濡外表面の外壁面熱移動[W/(m²・°C)], w = 実験水温度[W/(m²・°C)], P = 空気熱伝導率[W/(m²・°C)], (p =0.222), w = 空気熱伝導率[W/(m²・°C)], w = 実験水温度[W/(m²・°C)], P = 空気熱伝導率[W/(m²・°C)], (w =0.222)。

参考文献
1)長尾達夫, 松尾 陽 : 電気熱源を考慮した空調運転における動的最適化手法に関する研究, 日本気調・衛生工学会学術講演会論文集, pp.257 〜260, 1994年
3)足利幸雄, 渡辺浚仁, 有 有, 松尾 陽, 高橋 幸夫: 複合熱源熱システムの運転計画に関する研究, 日本建築学会計画論文集, No.499, pp.27〜34, 1997年
4)村本英治, 山本栄, 渡辺 亮, 八女 稔, 岩本 彰: 建築熱システムに関する空気熱源装置システム(住宅における冷房ヒートパイクシステムの可能性の検討), 日本気調・衛生工学会学術講演会論文集, pp.993〜996, 1995年
6) (社)建築設備技術者会 : HAPSA/ACLD8501 解説, 1986年
7)赤木泰之, 松尾 陽, 永田明寛, 渡辺俊行: 建築物の熱負荷と熱的特性の同定に関する研究, 日本建築学会計画論文集, No.450, pp.19〜27, 1993年
8) (社)建築設備技術者会 : 空調システム標準シュレーションプログラム HAPSA/ACCSS8502 プログラム解説書, 1986年
9)井上洋: 改訂版 空気調和ハンドブック, 丸善, 1985年
10) (社)日本建築学会: 伝熱工学資料 (改訂第3版), 1975年
11)石野久雄, 部 公子: 冷却ヨルの詳細解析とその基本的応用に関する研究, 日本気調・衛生工学会論文集, No.23, pp.57〜69, 1983年