暑熱および交通騒音が心理反応に及ぼす複合影響の定量的表現

QUANTITATIVE EXPRESSION OF COMBINED EFFECTS OF HIGH AMBIENT TEMPERATURE AND TRAFFIC NOISE ON PSYCHOLOGICAL RESPONSES

長野和雄*，堀越哲美**
Kazuo NAGANO and Tetsumi HORIKOSHI

In order to obtain in-situ evaluation of real daily living environment, it is necessary to treat plural environmental factors synthetically and to get both the non-specific evaluation (i.e. the universal comfort/discomfort) and the specific evaluation (i.e. the thermal comfort, the auditory, and the like) for each factor. In this study, twenty-nine male students were exposed to the combined twenty-five conditions of noise (46.8, 59.2, 73.1, 80.0, 95.4LAeq) and operative temperature (27, 30, 33, 36, 39℃). The subjects reported their feelings for each combined condition using linear unipolar scales. Results show thermal conditions affect both of noisy/quiet sensations and auditory comfort/discomfort significantly. It is obvious that the combined effect of temperature and noise contribute to the universal comfort and discomfort sensation. Equi-comfort and equi-discomfort charts are proposed to quantitatively evaluate the combined effects of the thermal and noise environment in this experiment.

Keywords: Temperature, Noise, Specific comfort, Universal comfort, Equi-comfort chart

温度、音、環境要因別快適性、総合的快適性、等快適線図

１．はじめに

我々の周囲には熱や音・光など、様々な物理環境要因が存在し、単独で存在することはあり得ない。そのため人体に対し、これらの要因が複合的に作用する可能性があることは心理学的なのみならず生理学的な立場からも既に指摘されている。また、各個要因に対する感覚をこの共通感覚の存在が古くから指摘されていることから、個別の感覚とは異なる総合的な感覚を考えることは重要であるという。したがって人間と環境との関係を把握するためには、複数の環境要因を同時に扱い、しかも特定の環境要因に限定されない総合的な評価を考慮する必要がある。

より、総体的評価の一つまたは単一の環境要因を対象とした研究で得られた快適性や環境的快適性などが、単一環境評価と総合環境評価との接点が見いだしにくかった。快適性などのように、特定の物理環境要因のみで決定されない価値・評価において、各種環境要因の影響の強さを定量的に捉えられ、全体的評価と各要因の影響評価の二面から、より実的な環境評価の予測が可能となる。しかし、快適性などのように特定の環境要因に特化された快適性のみを扱った研究や、逆にHorie et al.が、堀越らのように不快さの総合評価のみを扱った研究はなされていて、全体的評価と各要因からの快適性への影響評価を同時に定量的に捉えようとする研究は希有である。松原は温熱条件・騒音条件の組合せ9条条件において、室内外の環境に対する総合評価に加え、明るさ・音・室温・臭気など個々の要因に限定した評価を、尺度に「不快さ」を用いて得ている。しかし、それは各尺度上の評価に及ぼす温熱と騒音の影響を定性的に示したにすぎない。環境設計に応用していくためには、各環境要因の影響の度合を数値的に捉えることが必要である。

Horie et al.、堀越らは総合評価に対する温熱・騒音・照度の影響を数値化Ⅱ類によって定量的に表現し、さらに総合評価の予測を試みている。しかし予測される総合評価が「普通・やや不快・不快」の3段階のいずれの尺度でも、総合評価に各要因がどの程度寄与したか十分に把握するには至っていない。

Grether et al.は、熱・音・振動の複合影響について、熱条件に有効温度でおよそ31℃の値を用いて検討している。熱と音の複合影響について検討したViteles and Smith13やPoultin et al.14、Bell15の研究においても、それぞれ熱条件は有効温度73℃より94℃（34.4℃）の4条件、有効温度34℃の1条件、周囲温度で22℃、29℃、35℃の3条件としている。これらは作業成績を検討しており、心理反応を同時に得ているにもかかわらず、Yamazaki et al.は熱・光・音の複合影響について29℃以下の条件で心理反応を得ているが、作業適合性（work suitability）に

* 名古屋工業大学大学院社会開発工学科
** 名古屋工業大学大学院都市循環システム工学科

Graduate Student, Dept. of Architecture, Nagoya Institute of Technology, M. Living Science
Prof., Dept. of Environmental Technology & Urban Planning, Graduate School of Eng., Nagoya Institute of Technology, Dr. Eng.

NII-Electronic Library Service
keepersの検討である。いずれにしてもYamazaki et al.は除いてすべて暑熱環境に着目しているものの、作業性に焦点をあてたもので、快・不快性の検討は十分とはいえいない。一方、松原は複合影響の研究の重要性について、暑くてうるさい空間を定性的な事例として述べている。このような、日常の生活空間を対象とした研究の中でも暑熱と騒音条件は最も重要な組合せ条件の一つであり、定量的検討が待たれている。

本研究は対象とする環境要因を数種類条件と複数音条件の組合せとし、総合評価に対する熱と音の環境要因の影響を定量的に把握し、その影響を総合的に表す快適限界図の作成・提案を目的とし、実験的検討を行った。

2．方法
2-1．実験条件
実験は1998年6月14日～7月7日の期間に名古屋工業大学環境実験室にて作成した天井高2400mmの2つのチャンバーにて実施した（図1）。2室とも無色無色（N8.5）の布で覆われ、エアコンにてそれぞれ独立に温度管理できる。実験条件は前室において熱的中立と考えられる作業温度27℃および騒音騒音45.9LAeqとし、実験室において作業温度5条件（27、30、33、36、39℃）・音5条件（騒音騒音46.8LAeq；交通騒音；59.2、73.1、80.0、85.4LAeq）の組合せ25条件とした（表1）。作業温度の算出に用いる平均放射温度は500mmの立方体モデルとしての人体と各側面・床・天井面との吸収係数および各表面温度を用いて算出した。相対温度はおよそ30～70%。風速は0.15m/s以下の静穏気流とした。交通騒音は名古屋近郊の高速道路の側方に設けたDATレコーダー（SONY TCD-D10 PRO II）、アンプ（AIWA S-A22）のポリマーでレベルを調節することにより各音条件を実現した。また被験者に各音騒音レベルができず変わらないようスピーカを配置した。騒音騒音の測定は空調騒音、交通騒音ともに2分間であった。照明には白色蛍光ランプを用い、床上700mm鉛直上向きの照明は前室で640lx、実験室で1030lxであり、各座席位置ではほぼ等しかった。

2-2．進行
図2に本実験のタイムスケジュールを示す。1つの温度条件について、実験開始前の被験者の生理的・心理的滞在の影響を制限するため、前室にて30分間適応させた。その後実験室に移動し、2分間の音環境測定後に1分間で申告を行い、これを2分間隔をあけて全音

<table>
<thead>
<tr>
<th>測定項目</th>
<th>測定方法</th>
<th>測定位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>気温</td>
<td>アスマン通風乾湿球温度計</td>
<td>床上700mm</td>
</tr>
<tr>
<td></td>
<td>0.3mmΦ型熱電対</td>
<td>床上50mm, 700mm, 1100mm, 2300mm</td>
</tr>
<tr>
<td>相対温度</td>
<td>アスマン通風乾湿球温度計</td>
<td>床上700mm</td>
</tr>
<tr>
<td></td>
<td>0.3mmΦ型熱電対</td>
<td>床上50mm, 700mm, 1100mm</td>
</tr>
<tr>
<td>グループ温度</td>
<td>グループ温度計</td>
<td>床上700mm</td>
</tr>
<tr>
<td>表面温度</td>
<td>0.3mmΦ型熱電対</td>
<td>床上700mm, 1100mm</td>
</tr>
<tr>
<td>照度</td>
<td>電気照度計(MINOLTA NA-27A)</td>
<td>床上700mm</td>
</tr>
<tr>
<td>等価音レベル</td>
<td>等価音レベル</td>
<td>床上700mm</td>
</tr>
<tr>
<td>照度</td>
<td>照度計(MINOLTA T-1H)</td>
<td>床上700mm</td>
</tr>
</tbody>
</table>

図2 タイムスケジュール

図3 評定用紙
5条件について繰り返した。7分後に再び同じ順序で評定を繰り返し、より定常状態に近いと考えられるこの後半の評定を分析に用いた。被験者の生理的-心理的負担を考え、1日に2回以上の実験を行われなかった。音条件-音条件それぞれの順序効果を考慮しランダムに示した。なお、実験室内は各温度条件下制御されているため、交通騒音の示出期間以外は空調騒音が恒常にあった状態である。

2-3. 調査
表2に項目ごとの測定方法を示す。アスマン風向乾湿計で乾溼球温度。グローブ温度計でグローブ温度を被験者体感の中心である床上700mmで測定した。相対湿度の気温分布および間壁温、床温、天井温はT型熱電対（0.3mm）を用いて測定した。

心理反応の測定には感覚計10項目（暑さ、寒さ、暖かさ、涼しさ、うるさい、騒がしい、静か、明るい、暗い、おもしろい）、各環境要因別の評価8項目（夜間の快適・不快、曉の快適・不快、熱的快適・不快、視覚的快適・不快）、全体的な評価2項目（総合的快適・不快）の計20項目の直線単極尺度を用いた。尺度の右端に評価語をおき、左端には否定評価を記した（図3）。被験者に対し、各評価語に対して左端は全く感じない状態、右端は最も感じる状態として示されるよう、直線単極尺度への申告方法を説明した上で、「室内全体の印象をそれぞれの評価項目ごとに答えてもだ」と教示した。直線尺度による精度は全長を任意尺度100とし、数値に変換して処理した。

2-4. 被験者
19歳から36歳の男性20名を被験者として採用した。実験前日からの禁酒と十分な睡眠、実験開始1時間前の朝食・刺激物（カフェインなど）の禁止、実験中の居眠りや必要以上の運動の禁止など、被験者の生理状態を統制するため注意を促した。実験中、被験者の着衣は各自のリンクスまたはブリーフのみの2層体とし、座席安静状態にあった。被験者は全実験条件下に参加し、実験終了後、被験者に対し報酬が支払われた。

3. 結果および考察
3-1. 温暖環境条件と感覚計の関係
図4.5に各音条件ごとの作用温度と暑さ感、暖かさ感との関係を示す。図4より、作用温度が高いほどより暑さを感じる。図5より、27℃〜33℃の範囲では作用温度が高いほどより暖かさを感じるが、1℃の差で39℃条件下で33℃条件下と暖かさ感の申告はほぼ等しい。各申告ごとに音条件・音条件の2要因の分散分析を行い、音の主効果、音の主効果、交互作用の有意確率をもとめた（表3、4）。表3に示すように、暑さ感-暖かさ感とも音条件の主効果については有意であったが（p<0.01）、音条件の主効果および音の主効果についても有意ではなかった（p>0.1）。したがって、暑さ感、暖かさ感は音条件の影響を受け、音条件に対しては独立的であるといえる。望月ら22、Mochizuki et al.23は模擬室から引き起こされる熱・グレア-騒音について検討し、等騒音レベル50LAeq、60LAeq、70LAeqと比較的狭い範囲の音条件ではあるが、温冷感は音による影響を受けにくいと述べている。実験のように空間評価を行った実験とは異なるが、類似した結果ともいえる。またFanger et al.24は騒音レベル40dB(A)と85dB(A)の2段階とした実験において、騒音レベルが好みの温度（preferred temperature）に影響しないとし
図6 Lₐeqとうるささ感の関係
図7 Lₐeqと騒音感の関係
図8 Lₐeqと静かさ感の関係

図9 作用温度と熱的快適性の関係
図10 作用温度と熟的不快性の関係

図11 Lₐeqと聴覚的快適性
図12 Lₐeqと聴覚的不快性

図6 Lₐeqとうるささ感の関係
図7 Lₐeqと騒音感の関係
図8 Lₐeqと静かさ感の関係

図9、10に各音条件ごとの作用温度と熱的快適性、熟的不快性を示す。図9より、作用温度が高いほど熟的快適性が低下する。しかし46.8 Lₐeq条件で他の音条件よりも「快適」と評価されている。図4に示すように、熟的快適性において熱条件の主効果(p<0.01)だけでなく音条件の主効果(p<0.01)が有意であり、音の交互作用(p<0.05)のいずれにも有意であった。音条件の多重比較を行った結果(表5)、46.8 Lₐeq条件と他の全ての音条件との間で有意差があった。図10より、作用温度が高いほど熟的不快性が上昇する。しかし46.8 Lₐeq条件で他の音条件よりも「不快でない」と評価されている。表4に示すように、熟的不快性において熱条件の主効果(p<0.01)だけでなく音条件の主効果(p<0.01)についても有意であった。音の多重比較を行った結果(表6)、46.8 Lₐeq条件と他の全ての音条件との間で有意差があった。したがって、46.8 Lₐeq条件においては他の音条件よりも熟的に快適であり、また熟的に不快でないといえる。しかし、46.8 Lₐeq条件の音源は温度制御の際に生じる空調騒音であり、他の4条件の交通騒音とは異なる。したがってこの傾向は単純に騒音レベルが低いからではなく、音の違いによる被験者の印象の違いによる影響が含まれているために生じたと考えられる。

図11、12に各熱条件ごとのLₐeqと聴覚的快適性、聴覚的不快性との関係を示す。図11より、Lₐeqが高いほど聴覚的快適性が下がる。しかし59.2 Lₐeq、73.1 Lₐeq条件では熟条件の違いによって聴覚的快適性が異なる。表4に示すように、熟的快適性において音条件の主効果が有意であった(p<0.01)。また熟条件の主効果(p<0.15)および熟・音の交互作用(p<0.15)についても有意差はみられなかった。交互作用において単純主効果を検定した結果(表7)、59.2 Lₐeq(p<0.05)、73.1 Lₐeq条件(p<0.01)についてそれぞれ熟条件の効果が有意であった。図12より、Lₐeqが高いほど聴覚的快適性が下がる。しかし59.2 Lₐeq、73.1 Lₐeq条件では熟条件の違いによって聴覚的不快性が異なる。表4に示すように、聴覚的不快性において音条件の主効果(p<0.01)だけでなく熟・音の交互作用(p<0.01)についても有意であった。また熟条件の主効果(p<0.15)についても有意差はみられなかった。
表7 聴覚的快適性における交互作用の単純主効果

<table>
<thead>
<tr>
<th>Simple main effect</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>温度 (46.8Laeq)</td>
<td>372.69</td>
<td>4</td>
<td>93.17</td>
<td>0.57</td>
<td>0.69</td>
</tr>
<tr>
<td>温度 (59.2Laeq)</td>
<td>1696.56</td>
<td>4</td>
<td>424.14</td>
<td>2.58</td>
<td>0.04</td>
</tr>
<tr>
<td>温度 (73.1Laeq)</td>
<td>2233.76</td>
<td>4</td>
<td>558.44</td>
<td>3.39</td>
<td>0.01</td>
</tr>
<tr>
<td>温度 (80.0Laeq)</td>
<td>748.68</td>
<td>4</td>
<td>187.17</td>
<td>1.14</td>
<td>0.34</td>
</tr>
<tr>
<td>温度 (95.4Laeq)</td>
<td>217.91</td>
<td>4</td>
<td>54.48</td>
<td>0.33</td>
<td>0.86</td>
</tr>
<tr>
<td>録音：Mpool (温度)</td>
<td>560</td>
<td>560</td>
<td>164.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>温度 (27℃)</td>
<td>5341.17</td>
<td>4</td>
<td>1332.92</td>
<td>46.56</td>
<td>0.00</td>
</tr>
<tr>
<td>温度 (30℃)</td>
<td>4659.48</td>
<td>4</td>
<td>1164.87</td>
<td>40.62</td>
<td>0.00</td>
</tr>
<tr>
<td>温度 (33℃)</td>
<td>4648.14</td>
<td>4</td>
<td>1116.29</td>
<td>38.92</td>
<td>0.00</td>
</tr>
<tr>
<td>温度 (36℃)</td>
<td>5498.90</td>
<td>4</td>
<td>1374.45</td>
<td>47.93</td>
<td>0.00</td>
</tr>
<tr>
<td>温度 (39℃)</td>
<td>4811.94</td>
<td>4</td>
<td>1209.74</td>
<td>41.95</td>
<td>0.00</td>
</tr>
<tr>
<td>録音：Mpool (温度)</td>
<td>560</td>
<td>560</td>
<td>286.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ついて単純主効果を検定した結果（表8）、59.2Laeq (p=0.01)、73.1Laeq 条件 (p=0.01) についてそれぞれ熱条件の効果が有意であった。したがって、聴覚的快適性・不快性は熱条件の影響を有意に受ける場合があると考えられる。

3-3. 環境条件と総合的快適性・不快性の関係
図13、14に各音条件ごとの作用温度と総合的快適性、総合的不快性との関係を示す。作用温度が高いほど総合的快適性が下がり、総合的不快性が上昇する。その傾向は46.8Laeq 条件の時に最も顕著であり、Laeq が上がるにつれて総合的快適性が下がり、総合的不快性が上昇する。図13、14より、熱と音の交互作用が存在することは明らかである。したがって総合的快適性・不快性評価に対し熱と音の影響が十分に反映されており、これらの条件によって熱条件と音条件の評価が平行であると解釈される。

3-4. 感覚音環境要因別の快適性・不快性の関係
図15、16に各音条件ごとの暑さと熱的快適性・不快性との関係を示す。図15より、暑さを感じるほど熱的快適性が下がっており、暑さ感と熱的快適性は非常によく対応しているが、暑さを感じる程度ほどには熱的不快性は高くならない。両方の尺度に対して高いとすると、快適性は対応する暑さ尺度の約8割程度である。しかし図16に示すように、暑さを感じるほど熱的不快性が上昇しており、暑さ感と熱的不快性は用いた尺度の評定同様な1対1に非常によく対応している。すなわち、熱的不快性と暑さ感との対応関係は、それぞれ異なる尺度であるにもかかわらず大体1対1であるが、一般に熱的不快性の反対語とされる熱的快適性と暑さ感との対応関係は、熱的不快性との対応関係と必ずしも対称的にはなっていない。

図17、18に各音条件ごとのうるささと聴覚的快適性・不快性との関係を示す。図17より、うるささ感が高いほど聴覚的快適性が下がっており、うるささ感と聴覚的快適性は非常によく対応しているが、うるささ感の低い程度には聴覚的快適性は高くなり、暑さの場合と同様に対応するうるささ尺度の約8割程度である。しかし図18に示すように、うるささ感が高いほど聴覚的不快性が上昇しており、うるささ感と聴覚的不快性はほぼ1対1に非常によく対応している。すなわち、聴覚的不快性とうるささ感との対応関係は、それぞれ異なる尺度であるにもかかわらずわずか1対1であるが、一般に聴覚的不快性の反対語とされる聴覚的快適性とうるささ感との対応関係は、聴覚的不快性との対応関係と必ずしも対称的にはなっていない。

これらは「快適」という日本語が直ちに「快感」を意味するものではないが、積極的に心地よいことから、中庸さ、またストレスからの解放など不快さが取り除かれることまでの広い意味合いを含む。
ことによると考えられる。すなわち「暑くない」あるいは「うるさくない」という定常的な状態はあくまでも熱的あるいは聴覚的に「不快でない」状態が維持されているにすぎず、「快感」の意味合いを持たないため、熟の快適性、聴覚的快適性を対応する各感覚尺度の8割程度とすると推察される。少なくとも快適と不快が単純に対極的な意味においておらず、「快適・不快」などの両極尺度を間隔尺度あるいは名義尺度として扱うことに関問題点を示す結果といえる。

3-5. 各要因の快適・不快性と総合快適性・不快性の関係
図19に示す総合快適性評価を与えるような熟の快適性・聴覚的快適性の各評価の組合せを線図として示す。熟の快適性と聴覚的快適性のレベルが同程度の場合は総合快適性は両方の快適性の影響を受けるが、一方の快適性評価が高く他方の評価が低い場合、総合快適性は低い方が評価と同じ程度、高い方が評価の影響をあまり受けない傾向にある。

図20に示す総合不快性評価を与えるような熟の不快性・聴覚的不快性の各評価の組合せを線図として示す。図19の快適性の場合と対照的に、熟の不快性と聴覚的不快性のレベルが同程度の場合は総合不快性は両方の不快性の影響を受けるが、一方の不快性評価が高く他方の評価が低い場合、総合不快性は高い方が評価の影響をより受けない傾向にある。

すなわち、熟または音によって快適度または不快度の評価の強さが拮抗していれば総合評価は両方の評価に依存するが、一方が他方と比べて極端に不快性にあれば他方の快適性の影響は排他されると考えられる。したがって特定の環境要因によって（消極的に）快適性が維持していても、他方の環境要因によって不快となる場合、その環境は総合的には「不快」な、あるいは「快適」ではない環境であると判断されると考えられる。

Moriiら、森ら、仮想は多くの心理学的知見から、1つの属性・機能を複数通りに表現された情報は、どれか1つの情報のみが選択されるという排他原理に従って統合されるとしている。熟の快適性や聴覚的快適性が総合快適性という1つの心理的属性を複数通りに表現しているとすると、本実験結果は排他原理を支持していると考えられる。

3-6. 複合影響の定量的表現
図21、22は等しい総合快適性・不快性評価を与える熟と音の組合せ条件を示す線図である。それぞれ横軸に作用温度、縦軸にLaeqをとっている。すなわち、これは熟と音の快適性・不快性の相関をもとに5の間隔ごとにレベルが等価である温度・音条件を線図として表したものである。これらは環境の総合評価に対する熟と音の影響の度合を表しており、熟と音の快適性・不快性に及ぼす複合影響を定量的に示している。さらに作用温度と等価騒音レベルから環境の状況を予測し得るものである。Horieら、堀江らは等価騒音レベルを単一要因によるストレスが著しくない領域、すなわち中等度領域（40℃、50℃）に限定することで、各要因のストレスの割算として総合的な不快度を定量的に表現した。しかし前節に示したように、いわゆる中等度領域を含めた範囲については、ある条件が排他されるような場合が存在する。したがって中等度領域外を含めて複合影響を加算的に表現するのは困難である。
評価予測は3段階のみで環境評価予測の実用面においては十分とは言い難かった。ここに示す等音速線図・等音速線図は各要因の加算性に限定されておらず、また総合評価を比較的多段階にて表しておらず、このような問題点を明確に解決されていると考えられる。

4. 結論
本研究は、熱環境を熱的中立から著熱帯の条件に限定し、心理学的な失調と音の複合評価実験を行った。その結果、熱または音の感受性・騒音性情熱・騒音性情熱に影響する場合があり、音条件は熱的失調性・不快性に影響することが見出された。したがって特定の環境要因に特化された感覚や評価についてても他の環境要因が影響する場合があると考えられる。すなわち、これまでの研究の問題に随時指摘されている通り、環境の心理的価値研究において改めて複数の要因を同時に取り扱うことが必要性が示されたいと存じる。

また、快適性は、反対方向をそれぞれ別の個体として測定することにより、「快適」と「不快」という観点が心理評価として必ずしも反対性にないことを実証的に示した。ただ「快適」「不快」のような視覚条件よりもそれぞれを単独条件として用いる方が客観性があると考えられる。

各要因の快適性・不快性について、他に将来環境不快の情報が与えられれば排他原理に従い、総合快適性・不快性はその不快側の情報に依存することが示された。したがって総合評価を向上させることは、不快の原因を把握している特定の環境要因を改善していく方が特定の環境要因による快適性を維持していくよりも重要であると示唆される。

総合快適性・不快性に対する温熱条件および音条件の影響が明らかに見られた。本研究において、等しい快適・不快のレベルを与える熱的快適・不快、聴音的快適・不快、音の組み合わせを示す等音速線図・等音速線図、および作用温度と等音速線図をそれぞれ描くことによって、音と熱の相互影響を明確に表現しており、音と熱の主効果だけでなく、音と熱の相互作用も示すものとなっている。本研究条件の範囲内の熱・音環境条件であれば、作用温度と等音速線図の組み合わせからその予測も可能となる。

今後は寒冷環境においても実験を行い、寒冷環境をも含めた等音速線図を作成し、さらに実際の室内環境における調査を通して、線図の有効性について検証したい。

謝辞
本研究を進めるにあたり、実験の準備から行なうデータ整理に至るまで多大のご協力を頂きました名古屋工業大学飯沼研究室の皆様に心より感謝の意を表します。

本論文に関する既発表論文
1)Wagao, K. and Horikoshi, T. : The relationship between the specific and non
specific psychological evaluation of the combined effect of sound and temperature, Proceedings of ICHES(Yokohama), pp. 235-238, 1998
2)藤野和章、藤原武志：「熱音環境の特性、日本生気学会雑誌」、Vol. 35，No. 3, p. 23, 1999
3)藤野和章、藤原武志：「熱音環境の特性、日本生気学会雑誌」、Vol. 35, No. 3, p. 23, 1999
4)藤野和章、藤原武志：「熱音環境の特性、日本生気学会雑誌」、Vol. 35, No. 3, p. 23, 1999
5)藤野和章、藤原武志：「熱音環境の特性、日本生気学会雑誌」、Vol. 35, No. 3, p. 23, 1999
引用文献
2)大島正明：環境生理学、医歯薬出版株式会社、pp. 47, 1967
3)村田英二：哲学の現在・生きる考えてこと、岩波書店、1977
4)村田英二：共通受動論・知の組み立てのため、岩波書店、1979
5)松原斎樹：複数の環境要素の組み合わせの影響に関する文献調査について、日本建築学会東日本支部研究報告、pp. 161-164, 1984
6)長野.le、松原斎樹、山田英司、菅野晃、伊藤香苗、横山真一：環境音・温度・湿度の複合環境評価に関する基礎的考察一特に評価のためと非評価的評価の関係、日本建築学会計数情報論文集、No. 490, pp. 55-62, 1996
8)松原斎樹、坂井英美、松原斎樹、野口太友：室内外の温熱環境要因がもたらす不快さの加算的表現、日本建築学会計数情報論文集、No. 587, pp. 1-7, 1988
9)松原斎樹、坂井英美、松原斎樹、野口太友：モデルによる各種環境要因の影響の総合的評価、日本建築学会計数情報論文集、No. 502, pp. 1-7, 1989
10)松原斎樹：温度条件を含む環境評価における尺度について、ハウステリア研究ノート、No. 15, pp. 15-24, 1989
17)松原斎樹：暑くてるささい空間「快適環境の科学」大田秀夫(著)、朝倉書店、pp. 56-68, 1993
18)Horikoshi, T. and Kobayashi, Y.: Configuration factors between a rectangular solid as a model of the human body and rectangular planes, for evaluation of the influence of thermal radiation on the human body, Trans. of A.I.E., No. 267, pp. 91-101, 1978
19)栃木建治：第3章「心理学のためのデータ解析テクニカルブック」森・敬、吉田総司(監修)、北陸出版、pp. 85-175, 1990
20)長崎和志、坂本浩、石田信雄、木村修一：夏・熱・騒音・騒音による複合環境影響に関する実験研究(その1 騒音・暖房・冷房の不快要因に受ける影響)、日本建築学会大会大学術講演数要集(九州)、D-1, pp. 725-726, 1999
23)西村俊史、松原東樹：湿度の環境性に関する研究、日本建築学会大会学術講演数要集(東京)、pp. 1053-1054, 1993
24)西村俊史：湿度環境評価における「騒音」 「映像」 「快適」の与える影響、京都府立大学修士論文、pp. 1-61, 1993
27)森晃彦、佐藤宏利：感覚-知覚の脳内表現に関する調査研究、電子情報通信学会学術講演会報告、第215号、1986
28)森晃彦：環境感覚情報の統合心理学1 知覚と運動2 敏腕(編)、東京大学出版会、pp. 103-116, 1995
(1998年12月10日抄録受理、1999年5月24日採用決定)