屋外熱環境予測を目的とした k-ε モデルの壁面境界条件としての
建物外表面の対流熱伝達率推定式の提案

第1報 水平屋上スラブ及び試験家屋鉛直壁面における実測

PROPOSAL OF THE ESTIMATION OF THE HEAT TRANSFER COEFFICIENT ON THE
BUILDING SURFACES AS THE WALL FUNCTION OF THE k-ε MODEL
FOCUSES ON THE OUTDOOR THERMAL ENVIRONMENT

Part 1 Field measurements on both a horizontal roof surface and vertical wall surfaces of a test-house

荻島 理**, 月松孝司**, 谷本 稔***, 片山忠久****

Aya HAGISHIMA, Koji TSUKIMATSU, Jun TANIMOTO
and Tadahisa KATAYAMA

To establish a comprehensive and qualitative prediction for convective heat transfer coefficient (CHTC) on various urban canopy surfaces, a series of outdoor experiments were precisely reported. Simultaneous multi-point measurement concerned on all the surface fluxes except for the convective element primarily indicated the real distribution of the CHTC. One of the most important facts from this study is that a certain experimental equation expressed as the relationship between convective heat transfer coefficient and wind velocity was obtained. This was acquired from the experimental measurements focussed on the turbulent statistical values on a top-roof slab and a vertical wall of a test-dwelling, being different in both scale and wind direction against the surfaces.

key words: convective heat transfer coefficient, field measurement, k-ε model, wall function

1. 目的

建築外表面の対流熱伝達率は、ヒートアイランド現象や熱帯夜の増加などの屋外熱環境に対する関心の高まりに伴い、建物熱負荷計算に必要なパラメータとしてののみならず、キャノピー構成面から大気への顕熱輸送量の推定に不可欠なパラメータとして、新たな角度から重要視されるようになってきている。

対流熱伝達については、伝達工学の分野において無次元数による実験式が様々な流れ場に対して整備されている。しかし、時々刻々変動する自然風下で、大小様々な凹凸で構成されたキャノピー空間では、代表風速の定義が曖昧となるほど、これらの実験式を適用するのは困難である。これに対して、建築環境工学の分野では、主に次の2つの手法で対流熱伝達に関する研究が進められてきた。

第一は、屋外自然風下における建物外表面における対流熱伝達率の実測である。対流熱伝達率の推定方法としては、換気係数、SAT 計による測定、燃焼ガス発生により物質移動と熱流動のアーニオロジーを仮定して対流熱伝達率を求める方法などが多く報告されている。測定の制約から建物外表面の多点同時測定を行った例は少なく、対流熱伝達と直近の特定高さにおける風速または上空風との関係を主に一次式として提示した研究例がいる。しかし、これらの関係式には、建物形状、上空の風速、風速の測定高さなど各実測条件に固有の影響因子が含まれているため、研究者により提案式中の係数は異なっているのが現状である。

第二の研究は、風洞実験により建物全体の対流熱伝達率の分布を明らかにしようとするものとし、建物形状、建物間隔、風向風速の条件を変えて、建物周辺の気流分布により生じる対流熱伝達率の分布特性を知るためには有効な手法であるが、自然風に比べ流入風の乱れが大きく、模型と実際の建物とのスケール差が大きいため、限定的な手法とされるのが現状である。

以上これら既往の研究成果を概観すると、現在のところ周辺気流分布を考慮した建築全体での対流熱伝達率を合理的に評価する手法は十分に確立されていないと言える。

この課題に対しても、建物周辺気流の詳細な予測が可能な乱流モデルによる CFD が有効性を示しており。近年のコンピュータの発展の可能性向上とも相まって、CFD が実際レベルでの普及が進んでおり、むしろみならず、非等温断熱の気流環境評価を目的としたk-εモデルも提案されている。しかし、建物外表面における温度の境界条件については適切な手法が確立しておらず、準定的に壁面境界条件として対流熱伝達率を一定値として解析例も見られる。対流熱伝達率は都市外表面温度を左右するパラメーターであるため、屋外熱環境の予測に際してはより適切な境界条件が望ましい。しかし、既往の対流熱伝達率推定式を乱流モデルに
ルの壁開数として適用する事の妥当性については、次の2点から検討が必要であろう。

第一は、従来の対流熱伝達率推定式の多くが流速の関数であるのに対し、屋外熱環境予測に広く用いられるκ-ε乱流モデルは、各標尺毎の時間平均風速の輸送方程式で記述されている点であら。風向が一定しない乱れの強い場所では、流速と成分別時平均風速のスカラ値は異なる事が予想されるため、短い測定間隔での乱流計測が必要であろう。

第二は、既往の対流熱伝達率推定式が、測定場所、吹送距離、風向、風速の測定から他の因子の影響を含んでいるため、研究者が式中の係数が異なっている点である。壁面などとして一般的な建築物壁面に適用するためには、吹送距離や風向の異なる複数の場所において再現性が確認されている必要がある。

以上の背景から、本研究では、まず、実在建築物上水平スラブの表面熱収支の長期計測により、屋上スラブにおける対流熱伝達率の分布状態を明らかにする。次に、気流の当たり方とスケールが異なる2つの場所における乱流計測及び対流熱伝達率の測定を行い、κ-εモデルの壁面境界条件として適用可能な対流熱伝達率の推定式についての検討を行う。

2. 実測概要
2-1 測定場所及び測定項目
測定場所及び測定期間の概要を表1、測定場所の建築平面図を図1に、測定場所の概要を図2にそれぞれ示す。スケール及び壁面向に対する風向が対象外の場所として、建物上レベルスラブ(実測1)及び試験家屋の鉛直壁面(実測2)を対象測定とした。

実測1の屋上スラブは立ち上がり25mのパラペットが周囲に、4階建物に隣接しているため気流分布が生じやすいと考えられる実測1については、スケール面内の対流熱伝達率分布を把握するため、各階に1〜6階までの合計16の測定点を配置している。
また、実測2で対象とした試験家屋鉛直壁面は、ターンテーブルを回転させることで壁面への風向を調整する事が可能である。

測定項目及び測定機器の概要を表2に示す。実測1-αでは、表面温度、伝導熱流及び全天日射量を16点で測定している。また、正味放射収支、スラブ風速を屋上スラブ中央で、下向き長波放射強度を測定点で、4箇所で測定している。実測1-α、βの熱収支に関するデータは測定間隔1分、実測1-αの熱収支に関するデータは測定間隔2秒とし、解析に2分平均したものを用いている。
また、実測1-β及び実測2では、測定間隔10kHz、時間帯区分5分で乱流計測を行っている。尚、測定に先立ち赤外線放射カメラを用いて、各測定点周辺の放射温度分布が十分に小さいことを確認している。また、熱流センサーは、日射反射率及び反射率

<table>
<thead>
<tr>
<th>場所</th>
<th>期間</th>
<th>測定内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-α</td>
<td>実測1</td>
<td>4階建物に付設する2階建物屋上、スラブ防水仕上</td>
</tr>
<tr>
<td>I-b</td>
<td>2000.11/1社〜2000.8/31</td>
<td>16測定点で表面熱収支を連続同時測定</td>
</tr>
<tr>
<td>II</td>
<td>2000.12/22/29</td>
<td>窓面中央の測定点で表面熱収支測定と表面近傍の乱流計測を同時に行う</td>
</tr>
</tbody>
</table>

![測定場所の建築平面図](image1)

図1 測定場所の建築平面図

![実測1(建物北西より撮影) (a) 実測1(b) 実測2](image2)

図2 測定場所の概観
非降水日における正味放射収支数、伝導熱流の実測値を表面熱収支式(1)に代入して得られる対流熱伝達量を表面温度と空気温度の差で除することで、対流熱伝達を推定している（以下、残差法とする）。尚、実験1-aの図3以外の測定点では直接放射収支数を測定していないため、2点における下向き長波放射量の実測値より大気放射量及び壁面からの長波放射量を推定し、式(3)を用いて、長波放射量を算出している。

\[LR + SR + CD + CV = 0 \ldots (1) \]
\[CV = \alpha \cdot (T_{air} - T_{surf}) \ldots \ldots (2) \]
\[LR = e^\lambda \cdot (F_{sun} + LR_{sun} + F_{a} + LR_{a} - \sigma T_{surf}^4) \ldots \ldots (3) \]

(1)式に空気と表面の放射差を加えることにより、該当する測定点における対流熱伝達量を推定することができる。なお、実験1-aの図3以外の測定点では直接放射収支を測定していないため、2点における下向き長波放射量の実測値より大気放射量及び壁面からの長波放射量を推定し、式(3)を用いて、長波放射量を算出している。

図3 風速と対流熱伝達率の関係（実測1-a測定点⑤）

が測定対象箇所と同じになるように、周囲と同色に塗装し、シリコン系接着剤にて固定している。

2-2 対流熱伝達率の推定方法

非降水日における正味放射収支数、伝導熱流の実測値を表面熱収支式(1)に代入して得られる対流熱伝達量を表面温度と空気温度の差で除することにより、対流熱伝達を推定している（以下、残差法とする）。尚、実験1-aの図3以外の測定点では直接放射収支数を測定していないため、2点における下向き長波放射量の実測値より大気放射量及び壁面からの長波放射量を推定し、式(3)を用いて、長波放射量を算出している。

\[LR + SR + CD + CV = 0 \ldots (1) \]
\[CV = \alpha \cdot (T_{air} - T_{surf}) \ldots \ldots (2) \]
\[LR = e^\lambda \cdot (F_{sun} + LR_{sun} + F_{a} + LR_{a} - \sigma T_{surf}^4) \ldots \ldots (3) \]

式(1)に空気と表面の放射差を加えることにより、該当する測定点における対流熱伝達量を推定することができる。なお、実験1-aの図3以外の測定点では直接放射収支を測定していないため、2点における下向き長波放射量の実測値より大気放射量及び壁面からの長波放射量を推定し、式(3)を用いて、長波放射量を算出している。

図3 風速と対流熱伝達率の関係（実測1-a測定点⑤）

3. 屋上水平スラブにおける対流熱伝達率の分布特性（実測1-a）

3.1 対流熱伝達率と（空気温度－表面温度）の関係

屋上中央付近に位置する測定点⑤における全測定期間における対流熱伝達率と屋上スラブ中央の高さ 60cm における風速の関係を、空気温度と表面温度の差（以下、温度差とする）で分類して図3に示す。対流熱伝達率と風速は、概ね正の相関を示しているが、温度差が15℃以下のブロックは、熱収支の各成分の実測値が大小不揃いや残差として得られる対流熱伝達量の誤差が相対的に大きくなるためか、ブロックのばらつきが大きくなっている。温度差15℃以上のブロックについては、比較的ばらつきが少なく、対流熱伝達率と風速はほぼ一義的相関の関係を示しており、強制対流が支配的であると考えられる。なお、実際のデータの解析対象とする。

図3 対流熱伝達率と風速の関係（実測1-a）

3.2 屋上水平スラブにおける対流熱伝達率の分布特性

風向の異なる2日間について、対流熱伝達率の分布特性を図4に示す。
に示す。尚、測定点の測定結果で各測定点の流熱伝達率を正規化して表示している。図4(a)では、4階建物壁面に沿って流熱伝達率は小さな値を示し、風上側のスラブ中央に流熱伝達率のピークが生じている。一方、風向の異なる図4(b)の等値線は、図4(a)をほぼ反転したパターンとなっている。

以上より、風向の変化に伴って生じる建物周辺気流の違いにより対流熱伝達率の分布性状が異なっている事が示唆される。

3-3 屋上水平スラブにおける対流熱伝達率の偏差

屋上水平スラブ面内16点の流熱伝達率の平均値と屋上スラブ中央の中さ60cmにおける風速との関係を図5に示す。プロットのばらつきはあるが、概ね線形関係が確認できる。

次に、屋上スラブ面内16点の平均値で正規化した対流熱伝達率と測定点における風速との関係を図6に、正規化対流熱伝達率と測定点における風速との関係を図7にそれぞれ示す。風速、風向ともに対流熱伝達率のばらつきとの明確な関係は見られず、平均的に屋上スラブ面内の対流熱伝達率は約20%の偏差を生じている事が分かる。

図8 各測定点における風配図

図9 実測I-b測定点における風の時変化

図10 乱流計測時の測定点の位置（平面図）

図11 流速\(\sqrt{u^2+v^2+w^2}\)と成分別変動風速（\(\sqrt{u^2}, \sqrt{v^2}, \sqrt{w^2}\)）の関係（実測I-b, 屋上水平スラブ高さ13cm）

図12 流速\(\sqrt{u^2+v^2+w^2}\)と乱流エネルギーの関係（実測I-b, 屋上水平スラブ高さ13cm）
図13 流速\(\sqrt{u'^2 + v'^2 + w'^2} \)と成分配分風速（\(\sqrt{ \frac{u'^2 + v'^2}{2}} \))及び乱流エネルギーの関係（実測I-ב, 試験屋上鉛直壁面, 高さ13cm）

図14 \(\sqrt{u'^2 + v'^2 + w'^2} \)と対流熱伝達率の関係（実測I-ב, 測定点7,9,14）

図15 \(\sqrt{u'^2 + v'^2 + w'^2} \)と対流熱伝達率の関係（実測I-ב）

図16 \(\sqrt{u'^2 + v'^2 + w'^2} \)と対流熱伝達率の関係（実測I-ב, 測定点7,9,14）

4. 表面近傍風速と対流熱伝達率の関係

4-1 各測定場所の気流状況

屋上水平スラブ（実測I-ב）において測定点①③⑤の計4地点について各々1～2日ずつ、試験室鉛直壁面（実測II）において風向の異なる2日間について、表面熱収支の連続測定に加え、面からの距離13cmの位置で3次元超音波風速計による乱流計測を行い、対流熱伝達率と風速との関係について更に詳細な検討を行う。

各測定位置の風速図を図8に、実測I-בの測定点⑤における風速の種時変化を図9に、各測定点の位置を図10にそれぞれ示す。また、実測I-בにおいては各測定点近傍の超音波風速計の測定値と、実測IIにおいては測定対象試験室から約15m離れた塔屋の鉄塔に設置された風速計の測定値を比較し、実測I-בの測定点⑤においては、風向の変化により2つの時間帯に分けて表示している。

③-2はパラメータの影響のためか風向の变化が激しく、測定を生じていたと考えられる。実測I-בの③-2以外の測定点は、概ね風速が安定している。また、既往の独立系周りの気流分布に関する風向実験や数値計算結果との関係を確認するにあたり、後述するように鉛直壁面（実測II）の二条件ともに、スラブ表面から測定高さ13cmまでの一般的風速プロフィルを形成していると考えられる屋上水平スラブ（実測I-ב、但し測定点⑤を除く）とは異なる気流状況となっている事が推測される。

次に、実測I-בの屋上水平スラブについて、風速\(\sqrt{u'^2 + v'^2 + w'^2} \)と成分配分風速の関係を図11に、風速\(\sqrt{u'^2 + v'^2 + w'^2} \)と乱流エネルギーの関係を図12に、それぞれ示す。また、実測IIの試験室鉛直壁面について、同様に風速\(\sqrt{u'^2 + v'^2 + w'^2} \)と成分配分風速及び乱流エネルギーとの関係を図13に示す。

図12(b)より、測定③は時間帯により、プロットの勾配が大きく変化しており、風向が一定しない測定点③-2は他の測定点に比べ特に乱流エネルギーが大きい事が分かる。また、図11と図13(a)、図13(b)を比較すると、実測I-בと比べ、実測IIの方が②成分の風速が小さくなっている。実測II（鉛直壁面）の垂直風速と平行風速との間には流れの明確な違いは認められない。

4-2 風速と対流熱伝達率の関係

実測I-ב屋上水平スラブの4測定点における風速\(\sqrt{u'^2 + v'^2 + w'^2} \)と対流熱伝達率の関係を図14及び図15に示す。測定点⑦、⑨、
変化の割合が極めて低くなっている。また、測定点8-2は、測定点9-5に比べ大きな対流熱伝達率を示している。測定点8-2では、付近のパラペットの影響で剥離と逆流が生じ、表面付近の風速プロファイルが他の3点と異なっていたと考えられる。

次に、実測1-bの測定点7-5における平均流のスカラ値
\(\sqrt{u^2 + v^2 + w^2} \) と対流熱伝達率の関係を、図17に示す。この2測定点の最小二乗法に基づく回帰式は次の通りである。

\[
\alpha = 3.20 \cdot \frac{u + v + w}{u^2 + v^2 + w^2} + 9.99 \quad \ldots (5)
\]

サンプル数：618

3つの測定点はほぼ同様の線形関係が認められるが、図14と比較するとプロットのばらつきは大きく、相関係数も(4)式に比べ小さい値となっている。これは、乱れが強い屋外環境下において、対流熱伝達率が影響を及ぼす流速と平均流のスカラ値が一致していないためである。

\(\sqrt{u^2 + v^2 + w^2} \) を説明変数とする(4)式の相関係数は0.764を説明変数とする(5)式に比べ高い値を示している事、流速
\(\sqrt{u^2 + v^2 + w^2} \) は(6)式の16値を考慮した流速15値と同値であり、k-xモデル中のパラメータで表現できる事、以上の2点から、k-xモデルの壁面境界条件としては、説明変数の流速として
\(\sqrt{u^2 + v^2 + w^2} \) が望ましいと思われる。

\[
V = \sqrt{u^2 + v^2 + w^2} + 2K \quad \ldots (6)
\]

式で表される。

\[
\alpha = 11.42 / \sqrt{u^2 + v^2 + w^2} + 0.47 \quad \ldots (7)
\]

サンプル数：71

4-3 無次元数による整理

流速対流熱伝達率特性が他の3点とは異なる傾向を示した(6)を含む実測1-bの全測定点及び風向の異なる実測2の2条件のデータについてレイノルズ数とスセル数の関係を図18に示す。

尚、代表長さは、測定点における主風向を考慮してエッジから測定点までの距離を測定し、測定場所の違いに関して測定点は同一の傾向を示している。図15の全データから最小二乗法により得られる回帰式は次のように、高い相関係数を示している。

\[
Nu = 0.23 \cdot \frac{Re^{0.80}}{1.01} \quad \ldots (8)
\]

\[
Re = \frac{\sqrt{u^2 + v^2 + w^2}}{v} \quad \ldots (9)
\]

サンプル数：788

4-4 考察

同じ水平屋上スラブ内において、エッジからの距離が異なる3つの測定点7-5は、流速対流熱伝達率の関係がほぼ等しく、パラペット付近の測定点のみが異なる傾向を示している。この事から、乱流境界層が発達している領域では式(4)が適用できるが、剥離や逆流が生じている場合は式(4)の適用範囲外となる事が推察される。

一方、流速とエッジからの距離を説明変数とする式(10)では、15が小さいほど対流熱伝達率は大きく、また、15の変化に対する対流熱伝達率の態度も大きくなっている。これは、エッジからの距離が最も遠く、周囲に障害物の無い試験室の壁直面における対流熱伝達率が、屋上スラブにおけるそれに比べて大きな値を示した事を見たものである。

逆流や剥離の生じている場所を含めた建築外表面に対する式(10)の汎用性については、エッジからの距離が大きな実大建物の壁直面、都市キャノピーにおける壁直面等の本実測値とは異なる条件での実測結果による検証が必要であろう。

5. 結論

建物外表面の対流熱伝達率の評価法構築を目的として、まず、実在建物上スラブの表面熱収支の点検実行を行い、対流熱伝達率の分布特性を明らかにした。また、壁面に対する気流の当たり方及びスケールの異なる2つの場所における乱流計測及び対流熱伝達率の測定を行った。その結果、剥離や逆流が無く乱流境界層が発達した場における対流熱伝達率は、表面からの距離13cm
における流速により次式で表現される。

\[a = 3.96\sqrt{u^2 + v^2 + w^2} + 0.42 \] 　　（4）

また、本稿で測定対象とした全ての測定点のデータから、表面からの距離 1cm における風速と気温を参照し、エッジからの距離を代表長としたレイノルズ数とエクスフェル数の関係を得た結果を次の関係式に、20℃の空気の物性値を代入すると、対流熱伝達率は次式で表現される。

\[a = 11.42 \frac{1}{10^{3.96}} \sqrt{u^2 + v^2 + w^2} + 0.9999 \] 　　（10）

今後は、乱流数値解析を併用しながら、本実測とは異なる風向やスケールの表面、特に実建物の各垂直面における対流熱伝達率の実測データの蓄積を行い、市街地の建物表面に対する（4）式、（10）式の適用範囲の検討を行うとともに、κ-εモデルにおける壁面境界条件として周囲や近傍の伴う場所を含めたより活用的な対流

熱伝達率推定式を求める予定である。また、街路形状、建物形状、風向などの様々な条件に対して対流熱伝達率の推定式を求め、κ-εモデルによる街路空間の数値計算を行い、CFD を用いない

建物負荷計算や 1 次元キャノピー・モデル等においても利用可能な建物外表面の対流熱伝達率推定式の整備を行う予定である。

謝辞

日本工業大学成田健一先生には実績結果に対するコメントを頂くとともに対流熱伝達率のスケール効果に関してご数箇頂いた。また、査読者には大変有意義なご指摘を頂いた。ここに記して深い感謝の意を表する、本研究の一部は文部省科研費「地域性と推進研究「地域性と推進研究「地域性」と相互関連都市熱環境シミュレータの開発」（代表：片山濱久、課題番号11792017）による。

参考文献

1) 例えば、汗野大一、細野清一、金丸敏、熱風伝を用いた建物外表面からの

発熱の解析、日本建築学会計画論文集、第 592 号、pp. 56, 1997.10

2) 例えば、日本経済学会編、伝熱工学資料、日本経済学会、1996

3) 例えば、小林宣穂・篠谷清隆、夏期の端面対流熱伝達率に関する研究、日

本建築学会計画論文集 No. 465, pp. 11-17, 1994.11

4) 汗野大一・細野清一、水平壁面スラブの表面熱伝導効果と伝熱面解析、日

本建築学会計画資料集 No. 325, pp. 93-103, 1983.1

5) 中城琢磨・水野明・松尾洋、建物外表面の対流熱伝達率に関する研究、

日本建築学会計画論文集、（北越）p. 157-158, 1995.8

6) 寺崎明喜・石渡俊彦・植原和弘、建築外表面の熱・水分伝達に関する

実験的研究、日本建築学会計画論文集、No. 407, pp. 11-24, 1998.1

7) 成田健一・野々村幸・小野間、自然風下における空間冷暖温度伝達率の実

測都市市における建物外表面対流熱伝達率に関する実験的研究（その 2）、

日本建築学会計画論文集、No. 491, pp. 49-56, 1997.1

8) 例えば、成田健一・野々村幸・小野間、都市市における対流熱伝達率

に関する実験、都市市における建物外表面対流熱伝達率に関する実験

的研究（その 2）、日本建築学会計画論文集、No. 527, pp. 69-76, 2001.1

9) 成田健一・塚原孝行・篠谷清隆、建物外表面との対流熱伝達率に関する

実験研究、日本建築学会計画学会講演集集、pp. 1151-1152, 2000.9

10) 例えば、村上重・野々村幸・林常浩、κ-ε 2 方程式モデルによる

建物外表面の数値解析（その 1）、日本建築学会計画論文集、No. 392, pp. 11-21, 1988.10

11) 例えば、吉田伸夫・村上重・神田信夫 3 名、対流・放射・湿気輸送を達成

した外環境解析に基づく流化の効果の分析、日本建築学会計画論文集、No. 529, pp. 77-84, 2000.3

NII-Electronic Library Service