大温度差空気利用によるダクトレス空調システムの研究

—as builtにおける冷房運転と暖房運転の評価—

STUDY ON A DUCTLESS AIR-CONDITIONING SYSTEM USING LARGE TEMPERATURE DIFFERENCE AIR
—Evaluation of cooling and heating operations as built—

橋本幸博*1, 間純一*2, 坪田祐二*3, 中野幸夫*4
占部亘*5, 柳原茂*1, 岡建雄*6

Yukihiro HASHIMOTO, Yoshikazu HAZAMA, Yuji TSUBOTA, Yukio NAKANO,
Wataru URABE, Shigeru YANAGIHARA and Tatsuo OKA

This paper discusses ductless air conditioning systems using large temperature difference air. Low temperature air is available from low temperature chilled water made by ice storage systems. Supply air is once introduced to ceiling plenum chamber and supplied through ceiling-mounted diffusers to the room served in this system. Thermal comfort in the room is satisfied by the ductless air supply system using large temperature difference air.

Keywords: Ductless, Large Temperature Difference Air, Flow Visualization

1. はじめに

電力需要の平準化を目的として、間夜電力を利用した水・蓄熱式空調システムが普及しつつある。特に水蓄熱式空調システムについては低温冷水および低温空気を有効活用するために、大温度差利用の2次関係システムの開発が進められている。一般に空調設備のエネルギー消費量の約50％はポンプや送風機の搬送力によるものであり、大温度差利用の空調システムの開発は搬送力の低減による省エネルギー政策である。しかし、空気側で大温度差利用を行う際には低温空気を直接室内への給気と利用する場合、低温吹出し空気による荷重減少効果を吹出し口温度の問題が生じる。そこで低温吹出し空気による、以上の問題点を解決するための研究開発が実施されている。

本研究では、大温度差空気の利用を目指して、前述の問題点を解決する一方で、天井加圧チャンバー方式の空調システムを提案する。一般に、天井加圧チャンバー方式の空調システムはダクトレス空調システムと呼ばれ、井上部空間をチャンバーとして天井吹出し口からの給気を加熱後送風することから、ダクトのコスト低減及び天井上部の納まり改善などの利点がある。特にリニューアル工事では、OA機器等の増設に起因する冷房負荷増加に伴い送風量が増加することから、天井内部のダクトの納まりが厳しくなることが予想される。そのため、ダクトレス空調システムはリニューアル工事において有効な空調システムと言える。その一方で、ダクトレス空調システムでは吹出し口とダクトを直接接合しないため、各吹出し口からの濃度分布が異なることが問題であり、ダクトレス空調システムを採用する上で、この点を明らかにする必要がある。

本研究では、このダクトレス空調システムの利点と低温送風の利点を効果的に活用することを意図している。本研究で開発されたシステムは、一方向送風（ hà）の吹出し口から送風された低温の1次空気を、室内からの送風を遮断して天井チャンバー内部に加熱給気して、天井面に設置した吹出し口から室内に給気するダクトレス空調システムである。このシステムでは天井内部に水管を設置しないため、漏水心配がなく、枝ダクトの施工を省略できるため、インシャコールコストの点からも有利である。また、面的を基礎すれば、床吹出し空調システムとしても利用できることから、空調システムとしてフレキシビリティに富んでいる。

本論文では、以上のダクトレス空調システムについて説明し、実証試験を行う実験装置と実験結果を紹介し、as built（什器を設置していない状態）における本システムの有効性について議論する。また、ダクトレス空調システムにおける疑問点についても検討する。

本研究は、日本建築学会大会及び空調学会、衛生工学会学術講演会で発表した内容をもとに改訂編したものである。
２. ダクトレス空調システムの概要

一般的なダクトレス空調システムは、図1に示すように天井内部に枝ダクトを設置せず、天井空間をプレナムチャンバーとして扱い、天井面に設置した吹出しが口から室内に加圧給気する空調方式である。この場合各吹出しが口が給気ダクトと直接結合していないため、所定の吹出し風量が得られない可能性がある。また、天井空間において梁が存在する場合、梁下寸法によっては気流の乱れを阻害する可能性がある。そこで既報①では、RC造2スパン程度の建物をもつ天井チャンバーの模型実験を行い、吹出し口からの風量分布を調査した。その結果、吹出し口風量の分布は平均値の±10%程度であり、また梁下が50mmの場合でも、梁がない場合と比較して、送風量を20%程度少なくできるという結果を得た。

そこで、ダクトレス空調システムを低風速システムに適用する場合、前節で述べた問題点を回避する方法として、天井チャンバーに給気された低風速空気を運搬することによって、従来方法の給気と同等の風速で昇温させてから室内に給気する方法が安定であると考えられる。これを実現するために、図2に示すような空調システムを提案する。この方法は低風速風が本空気ファンユニット（以下MFUと略す）の送風口及び、天井チャンバー内部に加压供給する。このシステムの妥当性については、既報で十分に検討を行い、室内風速を検討するとき、室内との風速をフィードバックすることにより、室内風速と送風機運転の省エネルギー性が同時に確保できることを示す。従って、図2に示すダクトレス空調システムにおいても、室内温度を検知して給気量にフィードバックするため、送風機の回転数をイナバータで制御する方式とする。

3. 実験装置の概要

（財）電力中央研究所鮫江研究所内に、図2に示すような実験装置を設置した。本システムは1セットにつき、2スパン程度の内空を設けることを想定しているため、実験対象室は、7.0m×10.0m×3.0mHの大きさとした。天井チャンバーに加圧供給された空気は、天井に設置した吹出し口から室内に給気される。実験対象室内部の図4に示す。なお、実験室の他の用途として、アルミに塗装を施した天井放熱ペイントを設置して、天井放熱空調システムの実証も可能である。実験装置は図2に示す。冷房運転時は屋内温度風が1次空気をMFUにより運転と混合して、天井チャンバー内部に加圧供給する。この給気を6個のアネモ型吹出し口（#25）と6個の線状吹出し口（ダブル500L）から室内へ吹き出す。運転用送込み口には、スリット型（500×500）2個を用いた。最大送風量は2600m³/hであり、外気量は600m³/hである。冷房運転時には、給気によって運転して、空調機の2℃の低温冷媒を供給する。ペイント内の設置した壁パネルに電気ヒーターを埋め込み、実際の建物の外皮負荷に相当する換気冷房負荷を与える。暖房運転時には、空気を40℃に加熱して、空調機に供給する。ペイント内の設置した壁パネルに冬季の低温の外気を通過させて、建物の外皮負荷に相当する換気暖房負荷を壁すぺい側によせる。
4、冷房運転による実験結果と評価

外皮負荷別の冷房運転として、壁パネルの電気ヒーターに2.6kW（37W/m²）の発熱量を定常的に挿入する。また、照明発熱は合計で1.6kW（23W/m²）の定常負荷である。室内はas builtの状態として、データロガーで24時間連続計測する。

4.1 温熱環境評価

(1) 垂直温度分布

図5に示す実験室の平面12点における床からの高さ方向の温度分布を図6に示す。測定点は吹出し直下を避け上、平面的に均等配置した。設定温度が23℃、26℃のいずれにおいても、定常状態では居住域でほぼ設定温度±1℃以内に納まってい。また、平面温度分布は床下1.5mで最大になっていることがわかる。ISO7730-1994で、冷房時において床上0.1mから1.1mの垂直温度分布を3℃以内としているが、これを十分に満足している。

(2) 平面温度分布

定常状態における平面温度分布は、室内設定温度26℃のとき、天井チャンバー内温度は21.8℃から23.2℃の間であるが、床上1.5mでは25.7℃から26.2℃の間であり、非常に均一である。また、平面温度分布は床上1.5mにおいて最も小さくなる。以上の傾向は設定温度25℃のときも同様である。

(3) PMV

室内の設定温度26℃、居住者の活動量1.2Met、着衣量0.6cloとしたとき、室内代表点（平面No.5FL+1.5m）における定常状態1時間平均の温度は26.6℃、相対温度35.6%RH、平均放射温度（グローブ温度）は26.0℃、風速は0.21m/sである。従って、このときのPMV＝3.04、PPD＝7.2%である。ISO7730-1994では0.5〜PMV<0.5の範囲を推奨しているが、実験結果はこの条件を満足している。

(4) 室温の時間変動

図7（a）に室内代表点における温度、相対温度、MFU出口供給温度、制御用センサ位置における温度、図7（b）に外気温度と外気湿度の24時間データを示す。

設定温度26℃において、制御用センサ位置における温度は24時間平均値で26.2℃、RMSE（Mean Square Error）は0.18℃であり、時間変動が極めて小さい。本システムでは、定風量給気温度変化による供給風量変化と異なり、給気（コイル出口空気）温度一定変化による供給風量であるが、温度制御は良好である。

(5) 吹出し温度差

空調機コイル出口空気温度は設定値10℃に対して、24時間平均値で9.8℃である。これを送風と混合した後のMFU出口空気温度は24時間平均値で16.9℃である。従って、室温（約26℃）との吹
や不十分であるため、MFU 出口風速は変動している。24 時間平均値で 3.76m/s、RMS が 1.07m/s である。が、吹出し口風速の時系列データを見ると変動は大幅に減衰している。室内代表点の風速は 24 時間平均値で 0.22m/s、RMS は 0.019m/s であり、完全に風速変動が減衰していることがわかる。風速の時系列データを FTP（高速フリーライブラリ）にかけると、MFU 出口風速では 35 分の卓越周波が明瞭に現れ、室内代表点の風速では卓越周波が現れない。

ISO-7730 で乱流強度 10%における許容風速は空気速度 26℃のとき 0.32m/s となっている。室内代表点風速の乱流強度は 8.6%であり、平均風速は 0.22m/s なので許容風速以下である。

従って、MFU 出口風速の変動は、室内風速に影響を与えず、温熱環境に悪影響を与えない。

4.2 省エネルギー性の試算

空調機ファン定格出力 1.5kW の電力量は、24 時間で 5.8kWh である。実験では、MFU の電力量を計測していないが、空調機ファンと同等の電力量消費を仮定すると、合計 11.5kW の電力量とな る。定風量方式では空調機ファンを一定回転数で運転するので、この場合空調機ファンは 24 時間で 1.5kW×24h=40kWh の消費電力となる。従って、本システムでは、送風機動力が一般システムの 70%低減になる。空調機の冷却能力は 23.57kW（20270kcal/h）である。プランス出入口温度とプランス流量から算出した伝熱負荷は 24 時間平均で 13.22kW（11400kcal/h）なので、平均負荷率は 56%である。実際の建物における冷房運転は年間 120 日程度であり、平均負荷率算出のための平均時間は短いが、電力量を算出するためには適切である。

既往の試算では、平均負荷率を 50%としたとき、従来システムと比較して冷房運転中の送風機動力（電力量要件）の約 60%低減を見込んでいますが、実験でもほぼ同様の負荷率において、これに等しい数値が実験結果から得られたことを示している。参考文献 19）においても、低速送風システムによる送風機動力の低減を 70%と見込んでよい。

以上の省エネルギー性は、変風量方式及び低速送風方式の採用によるものであり、ダクトレス方式によるものではないが、以上の試 算は本システムのコストスタディーとして妥当である。

また、ここでは蓄熱式空調システムを利用した低蓄冷水による 冷房運転を前提としている。前述の無効空調エネルギーを還元・減圧コストの低減に加えて、蓄熱調整機能によって昼間の約 1/5 の夜間電力を利用した熱源機器のランニング・コスト低減効果がある。

5. 暖房運転による実験結果と評価

暖房運転では、室温の設定値を 25℃にし て 24 時間連続計測。外気温度と排気温度の空気温度差と送風量から算出したペリメーター試験冷房負荷は 2kW（30W/m²）程度である。低蓄熱空調運転と比較して小さいので、実験の都合上室内設定温度を通常より高めにした。

5.1 垂直温度分布

図 5 に示す実験室の平面 12 点における床からの高さ方向の温度分布を図 9 に折線グラフで示す。設定温度が 25℃において、定常状態では居住域では設定温度±2℃以内に納まっている。

---

42

NII-Electronic Library Service
図10 冷房モードにおける気流可視化結果（線状吹出し口）

図11 冷房モードにおける気流可視化結果（アネモ型吹出し口）

(a) 50% 風量

(b) 75% 風量

(c) 100% 風量
6. 気流可視化実験結果と評価

室内気流分布の概要を把握するために、天井吹出し口から流動パラフィンの模を発生させることにより、室内気流の可視化実験を行った。冷房モードにおける気流可視化実験の結果を図10 及び11に示す。これらの結果は発煙開始後30秒以上経過したときの画像である。気流可視化実験結果から、縦状吹出口では風量が増加するに連して到達距離が大きくなり、アメ吹き吹出しでは風量が増加することで連れて拡散半径が大きくなることが観察される。また、室内代表点における時間平均気流速度は0.22m/sと微風速であることから、冷房運転におけるドラフトの危険性は小さい。以上から、ダクトレス空調システムを採用したときの室内の気流性状は良好であると考えられる。