架構式プレキャスト鉄筋コンクリート工法における管理業務の生産性に関する
調査および分析

SURVEY AND ANALYSIS OF MANAGEMENT PRODUCTIVITY OF THE REINFORCED PRECAST CONCRETE FRAME METHOD

小早川 敏
Satoshi KOBA YAKAWA

Parts 1 and 2 of the report "Survey and study of labor productivity of the reinforced precast concrete frame method" documented the survey and analysis of labor productivity in on-site work and the manufacturing process involving the reinforced precast concrete frame method (RPC Method).

This report is a continuation of the survey and analysis of management productivity involved with this method. It has clarified the following:

(1) Management productivity levels on sites using the RPC method.
(2) Management productivity levels at member manufacturing plants.
(3) Overall productivity levels of management scale, including both on-site and factory management scale.

Keywords: Reinforced precast concrete frame method, RPC method, Conventional methods

1. 緒言

プレキャスト鉄筋コンクリート（P C a）工法を建築生産システムとして提起、その生産性を評価する場合、現場の作業や工場での製造作業における労働生産性だけでなく、現場を運営しつつ工場を稼働させ、それぞれの工程を進めるために行なう、計画、工事管理、品質管理などの業務（これらの業務を総称して以下「管理業務」という）の生産性についても着目する必要がある。

前報、「架構式プレキャスト鉄筋コンクリート工法における労働生産性に関する調査研究（その1）」では、柱および梁をプレキャスト鉄筋コンクリート造（以下PCa造という）の部材で構成する架構式プレキャスト鉄筋コンクリート工法（以下RPC工法という）を取上げ、現場工事における労働生産性について調査・分析を行った。また、前報、「同（その2）」では、部材の製造工事における労働生産性について調査・分析を行なった。本報ではそれに対応して、現場業務の調査を行ない、その生産性についての分析を行なうことにより本工法の労働生産性について総合的な評価を行うものである。

2. 研究の目的

2.1 本研究に関する既往の研究

建築生産における生産性に関して、現場の管理業務の合理化を図る試みについてはコンピュータ技術の活用をはじめとして従来から多くの成果が公にされているものの、管理業務そのものについての生産性を変革した研究に関して、公表されているもの甚だ少ない。本日建築学会、建築経済委員会、工事管理小委員会により過去に「工事管理の実態調査」をテーマとして3回のアンケート調査が行なわれ、その中で、工事作業所における技術系職員の構成や配員数の調査が行なわれているが、調査の目的上、工法別生産性の分析まではなされていない。

また、部材製造工場における人員構成の調査調査を行なったものとして、金多等による報告もあるが、管理業務の生産性の分析は、その目的を異にしている。

2.2 本研究の目的

本報では、RPC工法における管理業務に関し、現場および部材製造工場の業務を調査し、それぞれの生産性について分析し、そこで計画した業務量（以下総管理業務量という）によって、評価するために以下を明らかにする目的として、調査ならびに分析を行なった。

(1) RPC工法を用いた工事における現場の管理業務の生産性
(2) 部材製造工場における管理業務の生産性
(3) 現場と工場の管理業務量を合算した総管理業務の生産性

* 橋梁技術センター
Technology Development Division Fujita

— 101 —
3. 調査ならびに分析の項目とその方法
3.1 調査ならびに分析の項目
1) 現場工程における管理業務の生産性
 施工記録をもとに以下の調査ならびに分析をおこなった。
 (1) 工事管理に要する建築系技術者の数
 管理業務の生産性を施工床面積あたりに要した建築系技術者数および作業所に配置された建築系技術者数により示すものとし、施工記録を調査し、以下の2項目について分析をした。
 ①施工床面積あたりに要した建築系技術者
 作業所に配置され、管理業務に診着された、建築系技術者の施工床面積あたりの延べ時間を人・日/m²、人・/m²で示す。
 ②作業所に配置する建築系技術者数
 ある時間の範囲において、作業所に所属する建築系技術者の配置人員数を示す（単位：人）。
(2) 建築系技術者と組体工事作業員数の関係
 労務管理の効率を知る目的で、建築系技術職員と組体工事作業員の投入数との比率について分析する。
(3) 管理業務の生産性における要因
 構法の違いやP C a率の大きさと管理業務の生産性の関係
 を分析する。
 標準的な現場の管理組織と管理業務の内容を図－1に示す。作業所長および副作業所長は通常建築系技術者が担当する場合が多いので、建築系技術者として算定した。従来、工法の種類により、現場での管理業務量は建築工事だけでなく、設備工事や、総務関連の業務量についても差があるものと考えられるが、それぞれの担当者は別の工事に兼任する場合が多く、その場合、当該工事に要した業務量を正確に算定することが困難である。そのため信頼できるデータとして入手可能な、建築系技術者に関する分析にとどめた。
2) 部材製造工場における管理業務の生産性
 R P C工法用に用いる部材を製造する工場は、固定工場と仮設工場に分類できる。
 建築用部材を製造する固定工場における一般的な管理組織と管理業務の内容を図－2に示す。
 固定工場においては、一定に複数の工事の部材を並行して製作しているため、工場の構造体の生産量（P C a部材体積）に対する当該工事の生産量（P C a部材体積）の比率により単位面積あたりの管理量を算定した。仮設工場については、管理量は全て当該工事のためにおのおものと算定したものとして算定した。
3) 総管理業務の生産性
 上記1)および2)で得られた結果をもとに、作業所における管理業務ならびに工場における管理業務を合計した業務の生産性（総管理業務の生産性）に関して評価し、従来工法の生産性と比較した。
3.2 調査ならびに分析の進め方
 調査ならびに分析の手順を図－3に示す。調査の対象として取上げた工事は、前順報（その1）および、前順報（その2）と同一であり、管理量に関するデータは各工事の完了報告書に記載されたものを使用した。また、部材製造工場の構成は、生産規模のデータは各工場のパンフレットならびに聞き取り調査の結果によった。
4. 管理業務の生産性の調査ならびに分析の結果

4.1 現場工程における管理業務の生産性

1）工事に要した建築系技術者の数

現場工程における管理業務の生産性を評価する指標を下記の 2 つとした。

① 施工床面積当たりに要した建築系技術者数
② 作業所の規模に対する建築系技術者の配置数

RPC工法を用いて施工された工事および、在来工法により施工された工事に要した建築系技術者数の調査結果をそれぞれ表-1、表-2に示す。調査の対象とした工事はいずれも前々回（その 1）で用いた例である。この結果をみると、RPC工法における、施工床面積あたりの建築系技術者および作業所の規模と建築系技術者の配置数の関係を求め、それぞれについて在来工法のそれと比較した。

(1) 施工床面積あたりの建築系技術者数

RPC工法および在来工法の、店舗建築における施工床面積あたりの建築系技術者数を図-4に示す。図に示す図柄式より、施工床面積あたりに要した建築系技術者数に関して下記のことが分かった。

① RPC工法における施主の建築系職員数

RPC工法における施工床面積あたりに要した建築系技術者数は下式で表すことが出来る。

\[Y_i = 0.0025 X_i + 17.305 \]

式中：\(Y_i \)：建築系職員数（人/月）
\(X_i \)：施工床面積（m²）

② 在来工法における

RPC工法における、施工床面積あたりの建築系技術者数は、在来工法の約80%である。また、在来工法および施工工事におけるばらつきが大きい。

表-1 建築系技術者の調査結果（RPC工法）

<table>
<thead>
<tr>
<th>施工床面積（m²）</th>
<th>一般事項</th>
<th>務労数</th>
<th>労務量</th>
<th>労務量指数</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>200</td>
<td>500</td>
<td>1000</td>
<td>500</td>
</tr>
<tr>
<td>84</td>
<td>188</td>
<td>450</td>
<td>900</td>
<td>450</td>
</tr>
<tr>
<td>64</td>
<td>164</td>
<td>390</td>
<td>780</td>
<td>390</td>
</tr>
<tr>
<td>48</td>
<td>128</td>
<td>294</td>
<td>588</td>
<td>294</td>
</tr>
<tr>
<td>32</td>
<td>96</td>
<td>230</td>
<td>460</td>
<td>230</td>
</tr>
<tr>
<td>24</td>
<td>64</td>
<td>155</td>
<td>310</td>
<td>155</td>
</tr>
<tr>
<td>19</td>
<td>48</td>
<td>117</td>
<td>234</td>
<td>117</td>
</tr>
<tr>
<td>16</td>
<td>32</td>
<td>82</td>
<td>164</td>
<td>82</td>
</tr>
<tr>
<td>13</td>
<td>26</td>
<td>65</td>
<td>130</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>55</td>
<td>110</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>50</td>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>

図-4 施工床面積あたりの建築系職員数

式 (1) による建築系職員数と実測値の比較を図-4に示す。図に示す図柄式より、施工床面積（m²）における建築系職員数を下記の関数で表すことができる。

\[y = \frac{0.0031 x + 10.28}{R^2 = 0.5919} \]

式中：\(y \)：建築系職員数（人/月）
\(x \)：施工床面積（m²）

5. 作業所の規模における施工検査の管理

5.1 作業所の規模における施工検査の管理

下記のモデルを用いて施工検査者の配置人数を算出した。

\[y = \frac{0.0031 x + 10.28}{R^2 = 0.5919} \]

式中：\(y \)：施工検査者配置人数（人）
\(x \)：作業所の規模（m²）

① 作業所の規模を条件として施工検査者の配置人数を算出したが、これでは一月当たりの施工検査者配置数（人/月）をその単位として用いた。

② 作業所への建築系職員の配置人数（人）を示す
（2）職員の配置数

建築系技術者に関する作業所の建築系技術者は作業所において日々処理される管理業務量の大きさに応じて配置される。RP
C工法における管理業務量の大きさを評価することを目的とし
て、作業所の規模と建築系技術者の配置数の関係を求めた。
作業所の規模の大きさを示す指標として、時間の要素を取り
入れ、月当たりの施工床面積（\(m^2/月\)）で表現することとし、
建物の規模と識別した、RP C工法および在来工法における作業
所の規模と建築系技術者の配置数の関係を図-5に示す。
図-5に示す図より、作業所規模と建築系技術者の配置数
について以下のことわかった。
① R P C工法における作業所の規模と建築系技術者の配置数

RP C工法における作業所規模と建築系技術者の配置数は下式で表すことができる。

\[Y_2 = 0.0022X_2 + 2.1272 \]

\[Y_3 : 建築系技術者数 (人) \quad X_2 : 作業所規模 (m²/月) \]

②在来工法との比較

作業所の規模で見ると、施工床面積あたりの建築系技術者の
配置数は、RP C工法の場合、在来工法に比べ約75%である。
また、在来工法と比較して工事によるばらつきが小さい。

2）建築系技術者数と躯体労務量の関係

建築系技術者数と躯体労務量の関係を図-6に示す。
図-6より、RP C工法における建築系技術者数と躯体労務量の
関係は下式で表すことができる。

\[y = 89.916x + 3176.7 \]

\[y : 躯体労務量 (人/月) \quad x : 建築系技術者数 (人/月) \]

また、回帰式により在来工法と比較した場合、RP C工法にお
いては、建物系技術者一人当たりの担当する躯体労務量は在来工
法の約75%である。

3）管理業務の生産性および要因

管理業務の生産性におよぼす要因を知るために機械の違いや
P C a化率の大きさと管理業務の生産性の関係を分析した。

（1）主架構の構法と管理業務の生産性

主架構の構法と管理業務の生産性の関係を知るために、表-1の
データをもとに、純ラーメン構法と耐力壁併用構法について、
施工床面積あたりの建築系技術者数の関係を図-7に示す。

図-7より、純ラーメン構法の場合、施工床面積あたりの建築
系技術者数は下記の回帰式で与えられ、耐力壁併用構法に比べ、
相関関係の高いことが分かった。耐力壁併用構法の場合、在来工
法による部分に要する管理量のばらつきが大きいのがその理由と
推測される。

\[Y_3 = 0.0022X_3 + 10.516 \]

\[Y_3 : 管理職員数 (人/月) \quad X_3 : 施工床面積 (m²) \]

（2）P C a化率と管理業務量

表-1のデータをもとに得られた、P C a化率と管理量の関係
を散布図として図-8に示す。この結果からはコンクリートP C
a化および床面積P C a化率と管理生産性に関して、相関は認め
られなかった。P C a化率が高くなれば、在来工法に関わる管
理業務量は削減されるものの、一方で、部材ほかのチェック等の管
理業務は増加するのがその理由と考えられる。
4.2 部材製造工場における管理業務の生産性

部材製造工場において管理業務に要した職員数の調査結果を表-3に示す。各工事に要した職員数の算定にあたり、工場の年間設計製造量に対する当該工事の生産量の比率により単位価あたりの職員数を算定した。仮設工場については、当該工事のために新設した工場であり、管理量も全て当該工事のために要したものとして算定した。この表のデータをもとに、部材製造数量と管理量の関係を分析した。

部材製造数量と工場管理者的関係を図-9に示す。図-9より、部材製造数量と工場管理者の関係について、以下のことが分かった。

(1) 固定工場（建築部材用）の管理業務量は、下式で表われされる。

\[y = 0.1462x + 34.784 \] \hspace{1cm} (4.2,1) \]

\[y \] : 管理者数 (人・月)
\[x \] : 製造数量 (体積m³)

(2) 仮設工場の管理量についてはデータ数が少ないため定量的な評価は難であるが、固定工場における回帰式との大きな差異は認められない。

(3) 既設製造工場においては、製造管理でのシステム化が進んでおり、製造あたりの管理量は少ない。

表-3 部材製造工場における管理職員数の調査結果

<table>
<thead>
<tr>
<th>工場コード</th>
<th>(所在地)</th>
<th>部材製造能力 (m³/月)</th>
<th>部材製造状態 (日)</th>
<th>部材製造量 (m³)</th>
<th>経理義務 (人/月)</th>
<th>役職者数 (人/月)</th>
<th>役職者数 (人/月)</th>
<th>経理義務 (人/月)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>建設地目</td>
<td>1050</td>
<td>27</td>
<td>1200</td>
<td>98</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>001</td>
<td>施工地目</td>
<td>1470</td>
<td>30</td>
<td>1800</td>
<td>120</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>002</td>
<td>建設地目</td>
<td>1890</td>
<td>33</td>
<td>2200</td>
<td>150</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>003</td>
<td>施工地目</td>
<td>2310</td>
<td>36</td>
<td>2600</td>
<td>180</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>004</td>
<td>建設地目</td>
<td>2730</td>
<td>39</td>
<td>3000</td>
<td>210</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>005</td>
<td>施工地目</td>
<td>3150</td>
<td>42</td>
<td>3400</td>
<td>240</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

4.3 総管理業務の生産性

現場で要した管理業務量に部材製造に要した管理業務量を加えたものを総管理業務量とした。

(4.2.1) 式をもとに表-1に示した工事における部材製造に要した工場管理数を求め、現場管理数と算出した合計管理者数を総管理業務量とした。その結果を表-4に示す。表-4および表-2の結果をもとに、RJ工法ならびに在来工法における施工延べ床面積あたりの総管理業務量を図-10に示す。

図-10より、RJ工法および在来工法における総管理業務量はそれぞれ次式で示すことができる。

\[Z_1 = 0.0033X + 41.866 \] \hspace{1cm} (4.3,1) \]

\[Z_2 = 0.0031X + 10.28 \] \hspace{1cm} (4.3,2) \]

\[Z_3 : RJ工法における総管理業務量 (人・月) \]

\[Z_4 : 在来工法における総管理業務量 (人・月) \]

X: 施工延べ床面積 (m²)

以上記の式をとり、RJ工法ならびに在来工法における施工延べ床面積と総管理業務量の比率はほぼ同であるといえるが、仮にこれを標準的な規模と思われ、延べ床面積 50,000m²の建物で比較すると、RJ工法、在来工法の管理業務量は、それぞれ、206.9人/月 165.3人/月となり、在来工法にくらべ、RJ工法の方が25%程度大きくなっている。

表-4 総管理業務量の調査結果

<table>
<thead>
<tr>
<th>序号</th>
<th>部材製造工場コード</th>
<th>施工延べ床面積 (m²)</th>
<th>総管理業務量 (人・月)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>123,456</td>
<td>345,678</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>67,890</td>
<td>234,567</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>45,678</td>
<td>123,456</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>89,012</td>
<td>345,678</td>
</tr>
</tbody>
</table>

図-9 部材製造量と管理業務量

図-10 施工延べ床面積当たりの総管理業務量

—105—
5. 結言
RPC工法における管理業務の生産性について以下のことことが
明らかとなった。
1) 現場工程における管理業務の生産性
（1）工事に要する建築系技術者の数
① 頃材床面積当たりの職員数は下式で示すことができると。
\[Y_1 = 0.0025 X + 17.305 \]
\[Y_2 : 建築系技術者数 (人) \]
\[X_1 : 施工床面積 (m²) \]
この結果を測定工法と比較した場合、施工床面積あたりの建
築系技術者数は、RPC工法の場合、測定工法の約80%である。
また、測定工法と比較して工事によるばらつきが小さい。
② 作業所の規模（月当たりの施工床面積：m²/月）と配置職員
数の関係は下式で示すことができる。
\[Y_2 = 0.0022X + 2.1272 \]
\[Y_2 : 建築系技術者数 (人) \]
\[X_2 : 月間施工面積 (m²/月) \]
この結果を測定工法と比較した場合、作業所規模あたりの建築系技術者配員数は、RPC工法の場合、測定工法に比べ、約
75%である。また、測定工法と比較して工事によるばらつきが
小さい。
（2）建築系技術者数と製体労務量の関係
RPC工法における建築系技術者数と製体労務量の関係は下記の
回帰式で表現することができます。また、測定工法と比較した場合、
管理職員一人当たりの担当する製体労務量は測定工法の約75%
である。
\[y = 89.916x + 3176.7 \]
\[y : 製体労務量 (人·日) \]
\[x : 建築系技術者数 (人) \]
（3）管理業務の生産性におよぼす要因
構法の違いやPC化率の大きさと管理業務の生産性の関係
を分析した結果は下記の通りである。
① 主構法の構法と管理業務の生産性
純実現構法においては、施工床面積と職員数の関係につ
いて、下式で示すことができる。耐力壁併用構法に比べ、相関
関係が高い。
\[Y_3 = 0.0022X + 10.516 \]
\[Y_3 : 建築系技術者数 (人·日) \]
\[X_3 : 施工床面積 (m²) \]
② コンクリートPC化率および床面積PC化率と管理量
に関して、相関は認められなかった。
2) 製造工法における管理業務の生産性
（1）固定工場（建築物用）の管理量は、下式で表される。
\[y_1 = 0.1462 x_1 + 34.784 \]
\[y_1 : 管理数 (人) \]
\[x_1 : 製造数 (体積m³) \]
（2）仮設工場の管理工事について固定工場における回収式との大
きな相違点は認められない。
（3）既製品製造工場における、製造量あたりの管理量は少ない。

3) 総管理業務の生産性
RPC工法および測定工法における総管理業務量はそれぞれ
次式で示すことができる。
\[Z_1 = 0.0033X + 41.866 \]
\[Z_2 = 0.0031X + 10.28 \]
\[Z_1 : RPC工法における総管理業務量 (人·日) \]
\[Z_2 :測定工法における総管理業務量 (人·日) \]
\[X : 施工床面積 (m²) \]

前報、「架構式プレキャストコンクリート工法における労
働生産性に関する調査研究（その2）」2）1）では、RPC工法で用
いられる部材の製造工法における労働生産性について調査・分析
を行なうとともに、現場工事と製造工場を含めた場合の労働生
産性（総労働生産性）についての分析を行った。本報ではそれらと
続いて本工法の現場工事と製造工場の管理業務の調査を行い、さらに、
両者の業務を加算した生産性（総管理生産性）について
の分析を行なった。その結果によれば、RPC工法においては
測定工法にくらべ、総労働生産性は高いとなっているものの、総
管理業務量が低減されているとは言えない。RPC工法の生産性を
高めるための課題のひとつと言えよう。

謝辞
本研究をすすめるにあたり九州大学大学院アジア太平洋研
究科教授教授鈴木野潤博士の指導をいただき、ここに深謝する。

参考文献
1) 小川健：架構式プレキャストコンクリート工法の現場作業に関する工数調査
および労働生産性的分析 日本建築学会計画論文集 第546 pp199～205、
2001.8
2) 小川健：架構式プレキャストコンクリート工法の製造作業工場に関する工数調
査および労働生産性的分析 日本建築学会計画論文集 第555 pp287～293、
2002.5
3) 日本建築学会 建築経済研究会 工事管理小委員会：工事管理機能の体系化に関す
る検討（1989年）
4) 日本建築学会 建築経済研究会 工事管理小委員会：少人数作業所における工事管
理に関する調査～調査結果の集計とその解析報告（1992年）～
5) 日本建築学会 建築経済研究会 工事管理小委員会：工事管理の実施と工事管理者
の意識一アンケートの結果とその概要報告（1997年）～
6) 金野健介：架構式プレキャスト・コンクリート製造部品の現場に関する研究
日本建築学会 第8回建築生産管理技術シンポジウム 論文集 pp131～136、
1992.7

(2004年4月10日原稿受理、2003年6月12日採用決定)