建 築 の 選 好 に お け る 社 会 心 理 学 的 影 響
SOCIOPSYCHOLOGY EFFECT TO THE PREFERENCE EVALUATION ON
ARCHITECTURAL WORK

青 木 義 次
Yoshitsugu AOKI

On the basis of the POX model of the socio-psychology, the effect of personal relation on the preference evaluation on architectural work is formulated. Furthermore, considering the dispersion of the individual evaluation, the model is reformulated in the stochastic utility model. When the changing process of the individual evaluation in the group is reproduced by the simulation based on the model, we observed that the evaluation becomes identical in the group in the to each other favorable relation. The above result on the process is theoretically able to be proven.

Keywords: Evaluation of Architecture, POX model, socio-psychology, preference, stochastic utility model

建築評価、POXモデル、社会心理学、選好、確率的効用モデル

1. はじめに

建築設計競技における建築作品の選考、一般消費者が建物住宅を購入する段階での住宅の選択、賃貸アパート入居希望者によるアパートの選定など、建築のさまざまな局面で、人々は建築を評価し選択している。また、その評価の仕方や視点も多様と言わざるを得ない。例えば、何々の消費者が建物住宅を購入する場合には、用途、場所、機能性、コストなどが重要な評価視点になるが、ある建築関連団体がその年度の優秀作品を選ぶ場合であれば、当該作品の優秀さ以外にも、これまでの建築作品の傾向と比較しての新規性が評価の視点に入ることだろう。

こうした建築評価の問題に関して、もちろん建築芸術論の立場からの研究がある。しかし建築だけを見るのはなくて歴史の流れの中で位置付け新たに登場した建築の意義を分析する、あるいは、現代という時代に対するテーマとしてどれだけのメッセージ性をもっているかの把握、あるいは建築が住まれた都市・地域の環境・文化との関連性などさまざまな視点を提供している。

一方、別の立場として、建築を工学的視点から評価するものもある。この種の大規模な研究として、建設省（当時）総合技術開発プロジェクト「住宅性能総合評価システムの開発」①がある。これにより、建築の持つ性能評価が可能になり、新たな建築手法の可能性として開発する新しい建築手法の性能規定化の候補となった。この枠組みでの評価は、基本的に建築を規定する物理量から客観的手続きで評価値を求めるものであり、適法性的判断には実効性があるものの、前述の設計競技における建築作品の美術的問題を含めた評価には有効性を期待できない。

以上の2つのアプローチで把握されていない建築評価の問題も多い。そのひとつが評価プロセスの問題である。簡単に評価プロセスに関する問題を考察しておこう。例えば、先の設計競技の場合は審査員での審査員の評価の表明プロセスの中で、審査員は他の審査員の評価・判断の影響を受けることがある。異味深いのは、審査の初期段階では分かれていた意見を、最終段階では全体一致になることが多い点である。このような他者の評価が自らの評価に影響する例は、他にも見られる。学生が自分の目指す建築を模索する段階でも、雑誌等での権威ある評論家や尊敬する建築家の言説に影響を受けることもある。また、建物住宅の購入者は、信用できると信じた営業マンや友人・知人の言葉から評価判断をしていることも多い。いずれにしても、建築評価のプロセスでは、自分が好意的に考える人の発言内容に影響されている面を見逃せない。

この建築評価プロセスにおける他者の影響を把握する枠組みを建設することが、本研究の課題である。

2. 評価プロセスのモデル化

2-1. 非社会的評価モデル

最初に対人関係からの影響を除外したモデルから考えることにする。個人が評価対象である建築について、「好ましい—好ましくない」の程度を評価をしているとして、この評価値をa_{ij}とする。以下のように、a_{ij}が正の場合は好ましいこと、負の場合には好ましくないことの程度を表すものとする。特殊な場合は、a_{ij}=0の場合は「どちらともいえない」ということを表す。

そこで重要なのは、各人の評価値が比較的狭い範囲で Stokesである。つまり、各人の評価は主観的であり、ある個人iの評価値a_{ij}を他者である個人jの自分の評価値a_{ij}と大小関係（つまり好ましさの程度の大小関係）を判断する共通尺度を、各人が共有してい

* 東京工業大学大学理工学研究科建築学専攻 教授 工博 Prof. Dept. of Architecture, Tokyo Institute of Technology Dr. Eng.
2-2. 認知整合性理論

評価における他者の影響を考えるために、社会心理学の標準的テキスト**の1つにそって、試案を整列しておきたい。注目するのは認知整合性理論である。社会心理学では対人関係とこれに関連した態度変容を説明するフェスピスター（L. Festinger）により認知の不整合理論（Cognitive dissonance theory）が提案され、認知的一致性が、心理的不快を生じさせ、さらに認知的一致性が不快減少行動の動機となり、認知整合性理論（Cognitive consistency theories）が登場したことは有名である。

本研究で直接的に適用するのは、認知整合性理論の内、良く知られているハイダーのPOXモデルと呼ぶものである**。これは、フェスピスターの理論が、動機を説明することに重点を置いているので、動機理論と呼ばれているのに対して、不整合の全体的な知覚を問題としたことから知覚理論と呼ばれている。また、不整合の全体的なバランスに注目することから、認知的均衡理論（Cognitive balance theory）とも呼ばれている。また、彼の著書では、丁寧な分析が蓄積され、その中で、関連する部分のみを挙げておく。

注目している個人（reference person）を記号P、他者（other person）を記号O、もとの（a thing）を記号Xで表す。個人、他者、もとの関係として、次のようなものを考える。個人と他者の関係に、個人Pが他者Oを好ましいと認識しているか好ましくないと認識しているかという2つの関係があり、前者を+、後者を-の符号で表す。個人PとO者の関係にも個人PがもとのXを好ましいと認識しているか好ましくないと認識しているかという2つの関係があり、同様に前者を+、後者を-の符号で表す。他者との関係では、他者OがもとのXを好ましいと認識しているか否かについて、ならないう情報により、個人Pが認知した場合を考える。他者OがもとのXを好ましいと個人Pが認知した場合に他者OとのXの関係は+、他者OがもとのXを好ましくないと個人Pが認知した場合に他者OとのXの関係は-の符号で表わされる。

このとき、ハイダーは認知的一致性理論（対人関係において、個人のXを好ましいと認識している。自己のPが好ましいと認識しているので、均等状態であると言う。これに対して、図1下段右のケースでは、個人Pは自分のXを好ましいと認識し、自己Pが好ましいと認識する他者Oは、自分のXに対して自己のPは逆に好ましくないと認識している。この場合、個人Pには、好ましく思っているものとの認識の違いというストレスが発生しており、均等状態と見なす。

このような不整合状態は精神的ストレスの存在する状態であり、その解決という認識の変更が発生しやすい。例えば、図1下段右の不整合ケースでは、次のような2つの不整合の解消方法のひとつが生じる。第一の不均衡解消は、P関係の符号の変化である。つまり、自己Pが好ましいと認識する他者Oの判断に基づいて、個人PはもとのXに対する評価を変更してもとのXを好ましくないと認識するようになる。第二の不均衡解消は、O関係の符号の変化である。つまり、自己Pが好ましいと思っているのには逆にもとのXを好ましくないと認識する他者Oの判断に基づいて、個人PはもとのXを好ましいと認識するのである。そのようになっているはずだと言えそうになる。

以上は、本論文のモデル化に関わる部分を記述したので、厳密な社会心理学的側面についてはハイダーの丁寧な説明を参照された。
なお、ハイダーの理論を応用した建築計画研究**もある。

また、ハイダーは正確に論じていないが、ハイダーのいう均等状態は、POX三角形の各辺に好ましい・好ましくないの認知状態で付した1の符号を、それをそれぞれ1, -1 と見なして、3辺の符号の積（PX関係の符号×O関係の符号×OX関係の符号）をとった値が1のとき均等状態、-1のとき不均衡状態となっている。図1下段左のケースでは、+1×+1×+1=+1で均等状態。下段右のケースでは、-1×+1×-1=-1で不均衡状態であることが確かめられる。また、先の4種の不均衡解消による変化後の状態も、第一の場合で-1×-1×-1=+1、第二の場合で-1×+1×+1=-1、第三の場合で+1×+1×+1=+1となり、均等状態に変化することがわかる。以上のことから、ハイダーの認知均衡論は、POX三角形の符号の積の値が0のときは、不均衡状態であり、解消行動は、この値を増加する方向の変化であるという理論と理解できる。

2-3. 対人關係モデル

ハイダーの認知均衡論を基礎にして、先の社会的評価モデルを、n人よりなる社会集団における対人関係を考慮した対人関係の

![図1 ハイダーのPOXモデル](image1)

![図2 評価対象aと個人1-nの関係](image2)
評価への影響を考慮したモデルへと修正することを試みる。

非社会的評価モデルにおける個人 J の建築 a の評価 c_j, は主観的なもので他者が客観的に知り得なかった。しかし、審査委員会で審査員の評価値から他者の審査員の評価を知ることがある。また、尊重する建築家の評価からその建築家の評価を知ることもできる。このように、個人 J の建築 a の主観的評価値 c_j を正確に知ることは出来なくても、建築家についての各人の公開された評価というものが有る。その公開された個人 J の評価値 c_j, は有り。この公開された評価値 c_j, が単なる評価値 c_j, に一致することはない。自分の感覚的判断をもとにして他人の意見に真摯に反論する発言をする人がいるからである。ただし、当面の理論的発展の観点を考慮して、何は、はっきりか好ましいかが明確でないかのいずれかのみしか表現できないものとする。したがって、評価値は、個人 J が建築 a について好ましいと表現し、他人がこれを知ることができる場合では c_j, が好ましくないときは c_j, となる。

対人関係においては、個人 J が認識している個人 J に対する対人評価 c_j, をと表現、評価値 c_j, は、好ましい評価の場合には正、好ましくない評価の場合には負、建築家の評価を表すと影響を及ぼす無関係な影響を表す h とし、以下では考慮しない。

上記の準備のもとで、ハイダーガの認知的均衡理論を適用してみよう。つまり、主観的な個人 J を個人 J, 他者 O を個人 J, O X を建築 a と対応させる、POX モデルにおける均衡の程度を表す 3 边の符号の積に相当する値,

\[B = c_j, x_j, \]

（1）と表すことができる。この値が負の大きさの値の場合は、個人 J は按価を強く感じ、その解釈を計るようし、この値の増大する方向で、対人評価 c_j, に対する価値 x_j, を変える。このように不協和一協和の関係は、個人 J に限定されたところではなく、個人 J 以外の者にも生じる。したがって、すべてのそれについて個人 J の建築評価 c_j, と建築評価 x_j, の比に占める数値を、a_j, と表すことができる。

\[B = \sum_{j} c_j, x_j, \]

（2）と表される。

さらに、主観評価 a_j, の符号と公開された評価値 x_j, の符号が一致している場合には、主観的に感じたことを事前に表現しただけのでストレスは少ないので、逆に符号が異なる場合には、自己に感じたことと即座の表現されることからストレスが生じると思われる。そこで、主観評価 a_j, と公開された評価値 x_j, の一致・不一致に基づく仲介の程度を a_j, と表すことができる。

以上の説として、協和の程度が以下のようになる。

\[B_j = w_j x_j + (1 - w_j) \sum_{j} c_j, x_j, \]

（3）ただし、w は自己自身に関する部分と他者に関係する部分のウェイトを表す。さらに、式中の w_j, および (1 - w_j) をあらため、a_j, より c_j, と表記したばえ、協和の程度を表す量（以下、協和指標と呼ぶ）は、次のように表すことができる。

\[a_j = a_j + \sum_{j} c_j, x_j, \]

（4）つまり、個人 J は、この協和指標の値が大きくなるようになる傾向があることになる。

ここで、協和指標の値の変化は、建築 a の評価 x_j, と対人関係の評

価 c_j, および対人関係の建築評価 x_j, の変化より生じる。個人 J にとって、他者 J による表現である建築評価 x_j, は変化しないものと仮定す。ま、建築評価と対人関係評価を比較すると、対人関係は建築評価以外の関係、例えば、所属している団体の社会関係、長期にわたる友人関係、家族関係など、ある意味で影響力の大きいも、建築評価のプロセスの中でますます大きく変化するわけではない、そこで、以下の議論では、建築評価の関係 c_j, の値は固定し、個人 J は自己の評価の表現である x_j, の変化を考慮するものと仮定する。つまり、個人 J は、建築 a の評価 x_j, を変化させることで、協和指標を増大させようとして行動する。

2-4. 確率論的効用モデル

前項での議論を、見通しのよいものとするため、確率論的視点から、再構築しておく。

まず、協和指標は個人 J にとって増大したほど望ましいことである。これは、効用を考慮することである。

また、個人 J は、建築 a の評価 x_j, を決定できることに注意すること、個人 J の選択肢は、当然ながら、好ましい (x_j, = 1) か好ましくない (x_j, = 0) の 2 つしかない。したがって、2 つの選択肢における得られる効用は、先の協和指標に x_j, に対し -1 し、 -1 としたものである。つまり、建築 a を好ましいと表現したときの個人 J の受ける効用は、

\[d(x) = a_j + \sum_{j} c_j, x_j, \]

（5.1）であり、建築 a を好ましくないと表現したときの個人 J の受ける効用は、以下のようになる。

\[d(x) = -a_j - \sum_{j} c_j, x_j, \]

（5.2）とし、他人は上記の効用の 2 つのうち、大きな方を実現

するように自分の評価 x_j, を選択するはずである。

次に、個人 J の選択肢の払戻りの問題を考慮しておきたい。2 つの選択肢ごとに得られる効用は、上記で得られたが、この効用を最大

化するように個人 J が行動するなら、同じ状況下では同じ行動を

選択する。しかし、実際の人間行動では、同じ状況で異なることを

することも多い。理論モデルでは考慮していない不確定要因の結

果、異なる行動がなされると考えられる方が現実的である。そこで、この不確定要因を考慮するため、個人 J が選択する事実、個人 J の行動を表し、上記の効用が増え、不確定要因の効果を有する確率変数 e が加わったものと修正する。つまり、2 つの選択肢における効用は、

\[U(x) = a_j + \sum_{j} c_j, x_j, + e \]

（6.1）

\[U(x) = -a_j - \sum_{j} c_j, x_j, + e \]

（6.2）となる。したがって、効用、確率変数 e が加わってい

ることから確率変数に変化していることに注意する。

確率変数 e の確率分布が分かれば、効用の確率分布が決まる。このように考え、確率変数を説明するモデルとして、ロジット・モ

デルが考えられている。確率変数 e の確率分布として、さまざまな可能性があるが、ロジット・モデルでは、しばしばガンベルの確

率分布が用いられる。本研究の範囲内では、分布はガンベルの極値分布となることを仮定する。つまり、確率密度関数 f(e) と確率累積分
布間数 $F(e)$ は下記のようになる。

$$f(e) = \exp[-e - \exp(-e)]$$

$$F(e) = \exp[-e - \exp(-e)]$$

この仮定のもとで、2つの選択肢のうち、建築 a を好ましいと
表現するとき、効用の大きさを確率と、建築 a を好ましくないと表現
するときの効用の大きさを確率は、それぞれ以下のようになる
ことがわかる（注1参照）。

$$\text{Prob}(U^*_a(x) > U^*_b(x)) = \frac{1}{1 + \exp[-d(x)]}$$

$$\text{Prob}(U^*_a(x) > U^*_b(x)) = \frac{1}{1 + \exp[d(x)]}$$

ただし、

$$d(x) = d^*_a(x) - d^*_b(x) = 2a + 2 \sum_{i=1}^{m} x_i$$

2.5. 評価変容プロセス

以上の準則のもとで、n 人よりなる社会集団での各人が建築 a の
評価を変容プロセスを定式化することができる。

まず、各人が公表された評価値 x_i を自著目要素の要因をベクトル
x と表す。つまり、

$$x = (x_1, x_2, ..., x_n)$$

である。これを関連する評価状態とも呼ぶことにする。また、変数 x における自著目要素の価を変化させたベクトルを $x[i]$ と表す。つ
まり、

$$x[i] = (x_1, x_2, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n)$$

である。

また、時間の経過にともなって評価の変化を調べるのと、これま
での変化を変化と称するものである。より多様な状態などは時間の関数であるとして、$x(t)$ というように表
し时刻の推移を表すことになる。

時間単位 dt として、充分短い時間間隔 dt は、n 人の社会集団の
中で評価の変化を示す単位である。以下に記すと、その評価を変化させた個人を 1 人とすると、集団の変化は、全個人のの変化を示す状態 $x[i]$ の変化に応じるベクトルを求める。そこで、この確率,

$$p(x, x[i]) = \text{Prob}[X(t + dt) = x[i] | X(t) = x]$$

を求めるとき、上述の通り、

$$p(x, x[i]) = \frac{1}{n[1 + \exp(x, d(x))]}$$

となる。

3. 評価変容プロセスの解析

3・1. シミュレーション解析

グループでの建築評価の変容プロセスは、(12) 式で表すことができたが、理論的には複雑、傾向を議論することは難しく、そ
こで、代表的なケースについて、数値シミュレーションによって、評
価プロセスを考察することを試みる。

シミュレーション計算の手続きは以下の通りである。初期状態
は、各人が建築 a の評価をランダムに表示するものとする。つまり
確率 1/2 で好ましい x_1、確率 1/2 で好ましくない x_{1-1} とする。各時点
でランダムに選ばれた個人の評価値は、(12) 式に従って確率的に
変化する。この繰り返し 100 ステップ行う。

用いるパラメータは以下のようになる。本解析では、対人
関係の影響に注目するので、各人の建築 a の評価値を c_0, 中間評価
の 0 と設定し、人間関係の認識は、対称である。つまり,

$$c_0 = c_0$$

であるケースを想定する。また、値としては、好ましいとき c_0
= 1, 好ましくないとき c_0 = -1 とする。ただし、(3) 式に述べたウエ
イットがあるので、対人関係のウェイト 0.05 を入れて計算している。

集団の人数では以下の通りケースごとに設定した。

想定すべきケースとして集団内の全員が相互に好意的関係にある
場合（ケース 1）、集団が複数のグループに分けられ、同一グルー
プ内では相互に好意的だが、異なるグループの個人は相互に好意的でな
いというケース（2グループのときケース 2, 3グループのときケース 3）を想定した。また、集団の総人数はケース 1, ケース 2
では 100 人、ケース 3 では 250 人からなるグループに分け
られる。ケース 3 では総人数 60 人で 20 人からなるグループに分けられている。

シミュレーション結果を示したものが図3で各ケースの結果は以
下の通りである。

ケース 1：最初はランダムな評価であっても、時間経過に伴って
他の個人の影響で全員が同一の評価になっている。（図 3-1、図
中白は好意的、黒は非好意的を表す。以下同様）

ケース 2：最初はランダムな評価であっても、片方のグループ
では全員が好意的評価になり、もう片方のグループでは、全員が
非好意的評価になっている。（図 3-2）どちらのグループが好意
的になったかは初期値のわずかな差で決まるように思える。

ケース 3：同一グループ内では、同一の評価になっている傾向は
ケース 2 と変わらない。しかし、収束が遅い（図 3-3）。どのグルー
プロが好意的になるかは初期値に依存している。

3ケース共通に次の2つの傾向が顕著である。

1）ある程度のステップ数を経ると、完全な状態でわずかに揺らいで
いる状態になる。2）好意的な人間関係にあるグループは、対人
関係の影響により同一化していく傾向にある。

これらの点については、次に理論的解析を試みる。

3・2. 評価の同一化傾向の理論解析

上記の揺らいでいるがほぼ一定という状態を明確に定義してお
くため、全体の評価パターンが x となっている確率を $q(x)$ と表す。
揺らいでいるがほぼ一定という直感的イメージは、状態にあるも
のが $q[x]$ に変化する確率と、状態 $x[i]$ にあるものが x に変化する確率
が等しい状況、つまり、以下の確率の釣り合い条件が成立している
状態をいう。

$$q(x)p(x, x[i]) = q(x[i])p(x[i], x)$$

すなわち、建築評価のパターン x の出現確率は、上式を満足する
$q^*(x)$ に収斂することになる。この収斂状態は確率の均衡で呼ばれ
ている。

以下では釣り合い条件を満たす確率を分布を求めることにした
い。そのため、次のような関数を定義しておく。

$$E(x) = \sum_{x_i} c_0 x_i + \sum_{x_i} c_0 x_i$$

ここで、上記新第2項の人間関係を表す項は、論理の単純化か
ら、対称性を仮定しておく。
ただし、

$$Z = \sum_x \exp[-E(x)]$$

となることが注3 より分かる。

以上のことを考え、ここでのq^*が大きい状態が基準状態で出現しやすいということであるので、充分な時間経過に伴いEの値が小さい状態ほど出現しやすくなることがわかる。この事実を前提として関数$E(x)$を見れば、

c_{ij}が正ならば$x_i x_j$が正の方が$E(x)$は小さい
c_{ij}が負ならば$x_i x_j$が負の方が$E(x)$は小さい
ことから、好ましい他者の評価をとれるだけ一致し、好ましくない他者の評価とできるだけ不一致な状態が出現しやすいということが分かれる。

4. まとめ

本報告では、建築評価への対人関係の影響をハイダーのバランス理論を基軸にして定式化した。その結果、1) 対人関係が良好な団体では、評価の統一がなされること。2) 団体内では好意的、団体外とは非好意的なグループ化が示されている。団体ごとに評価が統一化されることが示された。

これらの結果は、良い意味でのかつつあるコルビュジェンのようす流派や大学のスクールカラーを育てることにもつながるが、人間関係が組織の利益関係に依存するような組織においては、個人の自由な評価が対人関係を介して隠蔽される可能性をも示唆している。建築評価が他者の影響を受けるという点では近年の12社会のもとでは効果が顕著になる可能性をも示唆している。

注
注1) (8)式の導出：$U'(x)$, $U''(x)$の定義式(6)および(8)式より、

$$\text{Prob}[U'(x) > U'(x)]$$

から

$$\text{Prob}[d'(x) + e > d'(x) + e']$$

$$\text{Prob}[e' < d'(x) + e - d'(x)]$$

$$\int f(e)F(d'(x) + e)de$$

となる。
\[
\begin{align*}
\text{さらに、式を代入することで、以下のようになる。}
\text{Prob}[U'(x) > U'(x)] &= \int_{-\infty}^{\infty} \frac{1}{1 + \exp[-d'(x)]} \exp[-\alpha \exp[-e]] de \\
\text{ただし、} \quad \alpha &= 1 + \exp[-d'(x)] \\
\text{この積分を実行することで、以下のように得る。}
\text{Prob}[U'(x) > U'(x)] &= \frac{1}{\alpha} \\
\text{なので、} \quad \alpha &= 1 + \exp[-d'(x)] \\
\text{(8.2) 式も同様に得ることができる。}
\text{注2)(12)式の導出：} x(l) \text{が1および-1の場合に分けて証明する。}
\text{注3)(21)式の導出：(20)式の結果を(14)式の左辺、および右辺に代入すると。}
\end{align*}
\]

\[
q(x)p(x, x[l]) = \frac{q(x)}{n[1 + \exp[E(\theta(l)] - E(x)]}} \\
\text{＝} \frac{q(x)\exp[E(x)]}{n[\exp[E(x)] + \exp[E(x[l])]}} \\
q(x)p(x, x[l]) = \frac{q(x)}{n[1 + \exp[E(x) - E(x[l])]}} \\
\text{＝} \frac{q(x)\exp[E(x[l])]n[\exp[E(x[l)] + \exp[E(x])}}{n[1 + \exp[E(x) - E(x[l])]}
\]

両者が等しいことから、生成関数では、
\[
q(x)\exp[E(x)] = \text{const} = Z
\]
となることがわかる。この式から(21.1)式が得られ、全体の確率の和が1となることから(21.2)式が得られる。
注4) \exp[x]\text{は指関数で} e \text{を表す。}

参考文献
1) 建設省建築研究所：住宅性能総合評価システムの開発、建築研究報告、No.87, 1979.3
2) 中田雄作：現代社会心理学、誠文堂新光社、1977
3) 三鈴光三郎：現代社会心理学、有斐閣、1987
4) 今城與治：社会心理学、誠文堂新光社、1993
6) 青木義次・浦溝義晴・大塚俊泰：あふれ出しの社会心理学的効果と居住空間へのあふれ出し調査からみた計画概念の仮説と検証 その2:一、日本建築学会計画系論文集、No.457, pp.125-132, 1994.3
8) 脇田淳・小野光一：都市交通計画における交通需要予測モデルの評価に関する研究、建築研究報告No.103, 建設省建築研究所、1983
9) 青木義次：建築計画・都市計画の数学、数埋学社、2006

(2007年9月3日承認終了、2007年12月7日採用決定)