【カテゴリー I】

By using Bayesian network and Belief propagation, we made relationship clear between display way of merchandise and purchase behavior in mass-market discounter of medium scale shop, selling childhood product after observing and recording customers behaviors. Followings are characteristics of customers' behaviors towards clothes in shelves, displayed by “Face-out”, “Sleeve-out” and “Folded”. On “Face-out”, they tend to act same ways on shelf just after upper one. On “Sleeve-out” and “Folded”, they tend to act same way side by side (particularly, on “Folded” they see both sides (they don’t tend to pick up or buy them)).

Keywords: behavior analysis, purchase behavior, display cases, mass-market discounter, Bayesian Network

行動分析、購買行動、陳列棚、量販店、ベイジアンネットワーク

1 研究の背景、目的
近年、幹線道路のロードサイドに300〜1000 mの中規模量販店（以下小売量販店）のチェーンストアが立地している。多くの量販店であり、同じ規格の陳列棚を構造ユナビスに一箇所に並べ、様々な商品が陳列・販売されている。商品の陳列棚、特に洋服の陳列棚では、フェイスアウト、スリーブアウト、フォールド等の陳列方法で商品が陳列されているが、どの高さの陳列棚でいずれの陳列方法をとると、来店者が購入するかについて、また、購入までのプロセスがどのように生じているかについては、データ取得の難しさもあり、十分に明らかにされていない。陳列方法に応じて異なる「商品の視認性」「手に取る」「購入する」（以下購買行動）等の一連の購買行動に基づいた、より効果的な商品陳列が重要である。

また、インターネットでの商品購入が日常的になり、一方で、コンピュータの技術革新が進むに従い、大量のデータを高速で処理する事が可能になると、査定購入者のプロファイル情報や購買履歴（購入商品の嗜好）、プラウジング履歴などのデータをもとに、パーソナライズ化された商品推奨をおこなうことによって、個人によって異なる個別の嗜好へのマッチングが技術的に可能となりつつある。この商品推奨にはベイジアンネットワークがしばしば用いられる。ベイジアンネットワークでは、商品の価格や嗜好によって生じる個別の群の生成を条件付確率の連鎖と捉えている。ベイジアンネットワークは、統計的に「依存関係のある変数の間を向きを持ったリンクで結び、リンクをたどったパスが循環しないような非循環有向グラフで表される確率モデル）であり、特に商品の購買行動で、個人によって異なる嗜好を把握情報をとし、感性情報に則した商品推奨のシステム構築に利用されている[3][4]。小売店舗での来店者の購買意図決定に影響を与える店舗内の状況要因として、青木は商品構成要因、人間要因、レイアウト要因（商品配置、陳列形態）を挙げている。このレイアウト要因に関して、1970年代から用いられているインタラクティブエンジニアリング手法（以下 IE 手法）[5][6]では、動線管理の達成率と売上げを指標として、来店者と販売員の動線の効率化を図る商品配置や陳列形態の決定に応用されている[7][8]。また、宗本はベイジアンネットワークを行動分析に用い、空間内での人間行動を捉えて、空間の好みと空間要素の関係を得ている[9][10]。

Yamaguchi 他はベイジアンネットワークを用いた分析において、福岡市の複数の店舗の回遊行動から、待ち合わせのために用いられる。店舗は待ち合わせ以外には用いられないことを明らかにした[11]。また Sato 他は、コンピュータサブスストレスの来店者の店舗内の移動行動を来店者の嗜好に基づく商品の選択行動を捉えコンジョイント分析を行った。この結果をエージェントを用いたモデルに適用し、混雑時

THE BOSTON CONSULTING GROUP, Mr. Eng.
Assoc. Prof., Graduate School of Engineering, Kyoto University, Dr. Eng.
Prof., Graduate School of Engineering, Kyoto University, Dr. Eng.
の店舗内の密集地点の予測に用いてその有効性を検証している[1]。

本論では、陳列棚の前での来店者の「商品を視認する」手に取る
「購入する」などの行動の連続の仕方は、例えば同一ノード・陳列方法で
あっても必ずしも常に同じになるとは限らず、これらの行動は、あ
る確率で生じる行動の連鎖と考えることができると考える。つまり、
シーンレジ連続する来店者の行動を個別の購買行動にあたっては
めて、その連鎖を条件付確率の連鎖として表すことが、来店者の購
買行動の状況をモデルとしてよく表していると考える。このように
一連の購買行動を知ることは、店舗内の来店者の行動を知る上で
重要である。来店者の購買心理や嗜好を取り入れて、購買に至るま
でのプロセスをメカニズムとして説明することが本来望ましいモデ
ルであるが、これらのデータを個別の来店者毎に購買行動の生起
する年に得ることは技術的に困難であるため、本論では、購入に至
るまでの一連の購買行動をデータとして取得し、商品の購買行動の
生起・連鎖する確率を条件付確率の連鎖と捉え、陳列棚の前の来
店者の購買行動と陳列方法との間の関係を明らかにすることを目的
とする。

2 分析の方法

本論では分析には、入力データを最も良く説明するようにグラフ
構造と条件付確率を決定するベイジアンネットワークを用いる。ベ
イジアンネットワークは確率変数、確率変数間の条件付依存関係、
条件付確率の 3 つによって定義されるネットワーク状の確率モデル
である[12][13]。ベイジアンネットワークは項目間相互の依存関係を
有向リンクの矢印によって表現することができるため、関係する項
目すべてのクラス表を比較するよりも、項目間の相互依存関係の理
解が視覚的に容易である（作業過程でクラス表は得られない）。なお、
似た分析手法に共分散構造分析があるが、共分散分析はデータの正
規性が前提とされるため、分析に制限がある。これに対して、ベイ
ジアンネットワークでは、個々の確率値を割り当てた不連続な確率
分布によるモデルであるので計算の自由度は高く、線形から非線形
の依存関係まで自由で形が近似できる[14]。また本論文では、項
目間のネットワーク図を得た後に、項目の下位同士の間での出現
確率の変化までを得る。以上までを得る場合、特に、来店者の行動
予測という不確定性を含む推論の精度の向上には、各項目の条件
付き確率の連鎖によって表現されるベイジアンネットワークを用い
ることが適切である。

文献 12 よりは、ベイジアンネットワークは、確率変数をノー
ードとし、変数間の関係を有向リンクで表すグラフ構造を持つ（図 1）。
有向リンクの元のノードを親ノード、先にあるノードを子ノードと
呼び、有向リンクによって親から子の向きに関係があることを示す。
子ノード の対する重複の親ノードの集合 を親ノードと表す、と交わり
と交わりの関係は、子ノードの変数の変数を条件
付する条件付確率によって以下のように定義的に表すことができる。

\[P(X_i|P(X)) \]

さらに n 個の確率変数 X1, X2, ..., Xn のそれぞれを子ノードとして同様
に考えると全ての確率変数の同時確率分布は次式のように表せる。

\[P(X_1, X_2, ..., X_n) = P(X_1|P(X))P(X_2|P(X))...P(X_n|P(X)) \]

変数間の依存関係は、各子ノードとその親ノード間にリンクを持

3 実験の概要

3-1 陳列棚の設定

陳列棚は、上下方向に 4 段、左右方向には 3 列となっている。本
陳列棚の位置を示す番地を設定した上で (n1-n12)（図 2）、同じ
番地には同じ商品を陳列し、各番地での陳列方法を検証する設定
を行う。商品の品種の違いにおける購買行動への影響を大きくするため
に、価格、かつ同等程度の販売量である 12 種類の幼児用長袖シャ
ツを陳列する商品として選んだ。また、陳列方法毎に衣類の並べら
れる順番を固定した（図 3）。フェイスアウト、スリーブアウト、フ
ォールデッドの 3 つの陳列方法は図 4 に示す通りである。これを 1
段毎に同じとなるような組合せ、選択順で一般によく見られる d1-d7
の 7 つの陳列形態を設定し、実験を行った（図 3）。

\[\text{フェイスアウト} \]

\[\text{スリーブアウト} \]

\[\text{フォールデッド} \]
は陳列形態d1-62名分データを一番手前に置いて示した。

表2 陳列形態d1〜d7の前での行動データ

4-2 購買行動のベイジアンネットワーク

表2のデータから7陳列形態の各番地の商品への来店者の行動の関係を示すベイジアンネットワークを得た（図7次頁）。ベイジアンネットワークの構築アルゴリズムには WEKA3.4.8のBayesNetを用いた。各子ノードに最適な個所の探索[13][14]には、Hill climberを用いた。各ノードは表1で設定した各番地での行動に対応する。ネットワークの信頼度は、ベイジアンネットワークで視認回数が多かった番地で来店者の行動の各置信値の判別率で示した。この結果、表3に挙げるようにアーエの3つの特徴的な行動の類型が得られた。さらに並ぶフィースアウトでは上手に同じ行動が連続する（上段で視認されば下段でも視認、上段で商品を1枚手に取らず下段でも商品を1枚手に取る、など）方向関係の方向と同じ方向に同じ行動となることが多く（ア）、左右に並ぶスリープアウトは左右に同じ行動が連続する（右の商品で視認されればその左でも視認される、など有向関係の方向と方向に同じ行動となることが多い（イ）。また、フィースアウトとスリープアウトが上方で並ぶ場合には上下で同じ行動が連続することが多く（ア）、左右に並ぶフォールドでは左右で同じ行動が連続することが多い（イ）。

表3 陳列形態d1〜d7の前での特徴的な行動の類型

4-3 陳列形態での購買行動

各陳列形態での来店者の購買行動を確率伝播法を用いて分析し、陳列されている番地毎の商品に対する来店者の行動を調べた。d5の陳列形態を例に述べる（図8）。確率伝播法のアルゴリズムには、BayoNet4.0のMSSMを用いた。

図5 7つの陳列形態

図6 実験対象の陳列棚とwebカメラの位置

図7 7つの陳列形態

図8 d5での行動の関係

表1 各番地の商品に対する行動

<table>
<thead>
<tr>
<th>行動の種類</th>
<th>なし</th>
<th>視認</th>
<th>1枚手に取る</th>
<th>2枚以上手に取る</th>
<th>購入</th>
</tr>
</thead>
<tbody>
<tr>
<td>順記号</td>
<td>n不</td>
<td>n視</td>
<td>n手1</td>
<td>n手2</td>
<td>n購</td>
</tr>
</tbody>
</table>

設定した各番地の行動列を、陳列形態毎にm人（d1-62人、d2-72人、d3-70人、d4-67人、d5-64人、d6-68人、d7-62人）行とするm行13列（被験者のidを1列目に振った）の行動列を得た。各陳列形態につき入力データ行列を作成し、7つの列を作成した（表2）。

4.8.5 右で同じ行動を取るしく
行動が生じていることが多いことがわかった。入出入口の傍で、来店者は入って壁に沿って店の奥方向へ移動するためか壁の右上の番地N3の商品が売っていた。

リンクの両端部での商品に対する行動が生じる確率をN3の商品に対する行動を模擬条件として確率変換法により求めたものを例に示す（表3）。表中の数値は、表上部にてN3（表中行方向）で各々の

<table>
<thead>
<tr>
<th>表3 n3での行動（表中行方向）とn6での行動（表中列方向）の関係</th>
</tr>
</thead>
<tbody>
<tr>
<td>n3-なし</td>
</tr>
<tr>
<td>n3-視認</td>
</tr>
<tr>
<td>n3-手1</td>
</tr>
<tr>
<td>n3-手2</td>
</tr>
</tbody>
</table>

し：行動なし、手1：商品1種を手にする、手2：2種

行動をした後にn2（表列方向）での行動の条件付き確率を、表下部ではn3（表中行方向）の後のn6（表中列方向）の行動となる条件付き確率を表している。観察中生じなかった行動については表内の数字も空欄となっている。N2、n3の商品についてはN3の商品で行動なし（N3-なし）、N3の商品を視認する場合（N3-視認）、それぞれでn2-なし、n2-視認が大きな値を示しており、N3を視認した場合にはN2の視認が生じる確率が高いことがわかる。N3、N6については、N3の商品で行動なしの場合（N3-なし）にはn6の商品で行動なし（N6-なし）の確率は0.64と高く、N3の商品を視認する場合（N3-視認）にはN6の商品を視認する（N6-視認）確率が0.53と高い。N6の商品を手にする（N6-手1）確率は、N3の商品に対する行動が、行動なし、視認する、商品を1種手に取る経路として0.03→0.17→0.29と高くなっていている。N3とN9の番地の商品の間にも同様の関係があったが、両者の間にN6を挟んでいることもあり、N3とN6の商品の間での行動ほどその関係は大きくはなかった。

最下段のスリープアウト陳列の3商品への行動（d10、d11、d12）間

に由来リンク（図8中n12からの矢印→）があり、このリンクの方向に従って行動が生じることが多いことがわかった。また、表3のフェイスアウト陳列の商品に対する行動との関係はしかがわかる。リンクの両端部での商品に対する行動が生じる確率をn12の商品への行動を模擬条件として確率変換法により求めたものを例に示す（表4）。n12（表中行方向）の商品で行動なしの場合（n12-なし）にはn11の商品でも行動なし（n11-なし）が0.63、n12の商品を視認する場合（n12-視認）には、n11の商品を視認する（n11-視認）確率が0.56、n12の商品を1種手に取る場合（n12-手1）にはn11の商品を1種手に取る（n11-手1）確率が0.31と他を比較して高く

<table>
<thead>
<tr>
<th>表4 n12での行動（表中行方向）とn11での行動（表中列方向）の関係</th>
</tr>
</thead>
<tbody>
<tr>
<td>n12-なし</td>
</tr>
<tr>
<td>n12-視認</td>
</tr>
<tr>
<td>n12-手1</td>
</tr>
<tr>
<td>n12-手2</td>
</tr>
</tbody>
</table>

n12-なし：行動なし、手1：商品1種を手にする、手2：2種

以上の分析をd1~d7のすべての陳列形態に対して行い、その結果から、同じ陳列方法で通路した行動を示している点を表5のようにまとめ、下記ア→エのように陳列形態を共通するルールを抽出した（ア→エは表3、図7中ア→エと対応している）。なお、d5での行動で得た上段の知見は表5中、d5-1、d5-2、d5-3と示す。
表5 d1～d7の購買形態で見られる行動の特徴

<table>
<thead>
<tr>
<th>陳列</th>
<th>行動の起点</th>
<th>陳列法</th>
<th>行動</th>
<th>利用位置</th>
<th>陳列法</th>
<th>行動</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1</td>
<td>植下</td>
<td>フォールドット</td>
<td>植下</td>
<td>上2</td>
<td>観点同</td>
<td>フォールドット</td>
</tr>
<tr>
<td>d2</td>
<td>植下</td>
<td>スリープルート</td>
<td>植下</td>
<td>上2</td>
<td>事態</td>
<td>フォールドット</td>
</tr>
<tr>
<td>d3</td>
<td>植下</td>
<td>フォールドット</td>
<td>植下</td>
<td>中心</td>
<td>観点同</td>
<td>フォールドット</td>
</tr>
<tr>
<td>d4</td>
<td>植下</td>
<td>フォールドット</td>
<td>植下</td>
<td>手2、手1</td>
<td>事態同</td>
<td>フォールドット</td>
</tr>
<tr>
<td>d5-1</td>
<td>最上、上2</td>
<td>フォールドット</td>
<td>最上、手1、手2</td>
<td>事態同</td>
<td>フォールドット</td>
<td>観点同行動</td>
</tr>
<tr>
<td>d5-2</td>
<td>最上、上2</td>
<td>スリープルート</td>
<td>最上</td>
<td>事態</td>
<td>フォールドット</td>
<td>観点同行動</td>
</tr>
<tr>
<td>d6</td>
<td>植下</td>
<td>スリープルート</td>
<td>植下</td>
<td>事態</td>
<td>スリープルート</td>
<td>植下手2</td>
</tr>
<tr>
<td>d7</td>
<td>植下</td>
<td>スリープルート</td>
<td>植下</td>
<td>事態</td>
<td>スリープルート</td>
<td>植下手2</td>
</tr>
</tbody>
</table>

上2: 手1に1枚の台紙を取る、手2に2枚以上の台紙を取る

以上d1からd7の分析から得られた実験を以下にまとめることができる。

ア：フェイスアウト陈列が多い場合（d4,d5）では、フェイスアウト陳列の上の商品に対する行動のとりやすく、d4については行動なし、視認、1枚以上手に取る行動を示す行動をとる確率が等しい。d4については行動なし、視認、1枚以上手に取る行動を示す行動をとる確率が等しい。

イ：スリープルート陳列（d1,d2,d4）では、左右の商品に対し行動をとる確率が0.12以上、手に取る行動を示す行動をとる確率が0.25以上高くなる。

ウ：スリープルート陳列が多い場合（d6,d7）では、左右の商品に対し行動をとる確率が0.12以上、手に取る行動を示す行動をとる確率が0.25以上高くなる。さらに、手に取る行動を示す行動をとる確率が0.25以上高くなる。これにより、これらの行動に対する確率の差は小さいもの行動をとりやすいことがわかった。

エ：フォールドット陳列（d1,d2,d3）では、左右の商品の視認の有無に関係が見られた。これは、フォールドット陳列では商品の表と色のパレードを同時に行うことができるため、来店者は商品の情報を見られることで判断できるからと考えられる。以下、2段目のフォールドット陳列（d1,d2）の場合には、行動なし、視認、1枚以上手に取る行動を示す行動をとる確率が他の行動と比較して、0.08と僅かではあるが高いになっている。また、上から2段目（d3）では左右の商品の視認の有無によってのみ、同じ行動をとる確率が他の行動と比較して0.14以上高くなった。

5まとめ

本論では小売店舗内の消費者の購買行動を観察し、1陳列棚内での商品の陳列方法と購買行動の関係を、ベイジングアントワークと確率伝播法によって以下のように明らかにした。

フェイスアウト、スリープルート、フォールドットの3つの陳列方法の商品に対する来店者の行動の特徴は、

- フェイスアウト陳列：以下の商品
 - フェイスアウト陳列：左右の商品
 - フォールドット陳列：左右の商品

上2: 手1に1枚の台紙を取る、手2に2枚以上の台紙を取る
注 1) モデル選択の基準となる統計量で期待対数尤度からの近似アプローチによっ
て得られる素泊の情報量基準(AIC)を用いた。AIC では、推定されたモデ
ル分布と真の分布との間のカルバック・ライブラリ情報量を最小化して得る
13) 2)任意の対象（変数 X）のときに推定値が出現する確率値（事後確率と呼ばれ
る）を求めるために、変数間の分布計算を繰り返しながら確率をネットワー
ク中で伝達することによって、各変数の確率分布を更新していく計算法15)。
注 3) ファイアウォール、ストリームオフ、フォールドが dt=47 の実験の中で
存在する平均確率数が、157、31.1, 74, 1.75, 6.3, 2 となり、等しくない。
実験の実施上、各店中の暴露平均確率数が同値になるように各条件間に
重み付けをした実験をしていたが、このためファイアーウォールでは上下
に一方向の操作を採るようなバイアスがかかったことは否定できない。
注 4) 西松屋向日店（京都府向日市）
注 5) ニュージーランドのワイクート大学の Ianh. Witten, Eibe. Frank を中心として
JAVA で開発されたオープンソースのデータマイニングツールで世界中の研
究者が利用している。
注 6)すべての変数の取り得る数値構成の組合せに変数が増加するにつれて爆発的
に多くなる。これをすべて探索するのは探索空間が巨大になりすぎるため、
仮想として候補を限定し様々な条件の下でデータフィッティングを行いなが
ら全体のネットワークを得ることが望ましい。子ノードを従、これに接続す
る親ノードを数とした 1 級の木（これを子ノードと呼ぶ）に着目すると、ベ
イジアンネットワークはこの木が組合わさったものであり、この子ノードに 1
つの条件付確率値が定義される。局所の探索によって各子ノード毎に最適
な局所木を得、これを繰り返すことで全体のネットワークを構築する作業
15)。
注 7) 産業技術総合研究所で本村陽一を中心に 2001 年に開発されたベイジアン
ネットワークのソフトウェア 13)。SQL データベースで格納された大量のデ
ータとのインタフェースが可能で、グラフ構造の探索機能など様々な機能
が追加されている。SQL データベースでデータベースを作成するので、デー
タをメモリに読み込むこともなく作業が実行できるためデータ量の増加に対し
て計算速度の低下を起こさない利点がある。本論では、weka で得たネットワ
ークで結ばれた項目相互間の確率値を計算に用いた。
参考文献
1) 清水善一、「チェーンストア経営の目的と現状」[新訂版]、実務教育出版、2004.6
2) 本村陽一、ベイジアンネットワーク、電子情報通信学会誌、vol.83、No.8、
pp.645-646、2000.8
3) 戸松和、森野有亮、末吉吉和、藤原潤、ピオリアニ※ニューナネット、加藤俊
一、「消費者の感性モデルを利用したレコメンデーションシステムの構築」、
情報処理学会論文誌、vol.44、No.SIG8(TOD18)、pp.46-54、2003.
4) 岩崎弘利、水野伸洋、原重孝、本村陽一、「ユーザーの好みに合わせてコンテ
ンツを推奨するカーナビへのベイジアンネットワークの適用」、電子情報通信學
会技術研究報告、NC2004-55、pp.25-30、2004.7
5) 村上知子、齋藤明弘、折原良平、「ベースラインネットワークによる消費者行動
分析 - 消費者の内部状態の解明に向けて -」、電子情報通信学会技術研究報告、
NC2004-70、pp.9-14、2004.10
6) 本村陽一、「チェーンストア経営の目的と現状」[新訂版]、実務教育出版、2003.11
7) 福本修作、「ベイジアンネットワークを用いた空間増殖の確率モデルの研究」、
日本建築学会論文計画論文集、第 618 号、pp.173-179、2007.8
8) Rui Y AMAGUCHI, Saburo SAITO, "Bayesian Networks for Probabilistic Inference of Complex
10) 本村陽一、「ベイジアンネットワーク技術・ユーザー・顧客のモ
デル化と不確実性推論」、東京電機大学出版局、2006.7
12) 本村陽一、「ベイジアンネットワーク技術・ユーザー・顧客のモ
デル化と不確実性推論」、東京電機大学出版局、2006.7
13) 難読本男、本村陽一、植野真真、「ベイジアンネットワーク概説」、培風館、
2006.7
14) 本村陽一、「ベイジアンネットワークによるヒューマンモデリングの実際」、電子情
15) 本村陽一、「ベイジアンネットワーク構築システム BAYONET」、人工知能学会 基
礎論研究会、2001 年ベイジアンネットワークチュートリアル、東京、2001.7
16) 斎藤、松岡伸也、本村陽一、吉田 哲、益田英明、「1 陳列棚での陳列形
態と購買行動の関係 - 1 世供用店舗における購買行動の研究 その 2 - 」、
日本建築学会大会学術講演論文集（九州）、E-1 分類、p.1135-1136、2007.8
(2008年5月9日文献受領、2008年8月4日採用決定)