PROPOSAL OF MOBILITY INDEX BASED ON THE SPATIOTEMPORAL ANALYSIS OF WORKING STYLES

Working mobility over time and space based on the analysis of e-mail utilization Part 2

Shun WATANABE

Based on the result of our previous paper, the purpose of this study is to clarify the spatiotemporal working patterns of discretionary labor in detail, and to propose the index of measuring and comparing the working mobility of individual labor. First, about 48 laborers categorized in the 4 working styles, the features of their working time distributions are investigated by recounting the e-mail access log in each style. Next, the locations (longitude and latitude) of their external workplaces are specified based on the IP addresses recorded in the log file, and the zenithal map is drawn to confirm their spatial distribution using GIS. The relations between the distances from the office and amounts of work at the external workplaces are analyzed on the spatiotemporal distribution charts. Then, the distances are normalized by translating to the hyperbolic plane, and the working mobility index is formulated. The index is to give a certain dimension to the concept of “field of presence” substituted for “point of presence” in the post-sedentary society.

Keywords: Post Sedentary, Workplaces, GIS, Spatiotemporal Distribution, Hyperbolic Distance

1.はじめに

近代的計画学の基本原理は、空間・時間を分割化し、それぞれに個別機能（行為）を割り当て最適化することであった。建築計画学におけるパーセンノキタイプも都市計画学における用途地域もこれに基づく体系であり、建築・都市空間の近代化に大きく貢献してきたことは誰もが認めるところである。オフィスビルが林立するCBD、駅前・幹線道路沿いの大小規模の商業集積、閑静な郊外住宅圏地などは、正にその集大成であろう。しかし、それらの多くが今日では問題を抱え、見直しを迫られている。情報化の進展により、我々の様々な行為（アクティビティ）と空間・時間との関係の建立の個別的な関係は著しくあり、多様化・流動化しつつある。このような社会構造の構造変換は、ポスト定住化（Post Sedentary）として識者の中で広く認識され始めている。

一方で、行為（アクティビティ）の流動化に言及した研究は少ない。その意味するところは未だ曖昧である。筆者は先の論文において、電子メールのアクセスログに関する分析を通じて、執務行為の自由度（流動性）が担保された“裁量労働制”による労働者の執務行為が時空を越えて如何に流動化しているのかを定量的に明らかにし、彼らの就労スタイルがC1：保守型、C2：時間流動型、C3：空間流動型、C4：ポスト定住型の4つに類型化できることを示した。この結果は、各就業者の総就労時間、ワークプレス数（オフィス、自宅、出張先、サードプレイス、モバイル環境等）、空間流動化率（総就労時間でのオフィス外での就労時間の割合）、時間流動化率（総就労時間に対する定時制時間外での就労時間の割合）という4つの方針に基づくものであった。しかし、各類型の解釈はそれぞれの指標の平均値から推定される考察に留まるもので、流動化した執務行為の“時間分布”やワークプレースの“空間分布”については不明なままであった。

2.研究目的

そこで本研究では、先の結果を踏まえ、アクセスログの詳細解析、およびWeb上のデータベースサービスと地理情報システムの活用を通じて、就労スタイルごとの時間分布・空間分布を明らかにするとともに、就業者ごとの執務行為の流動化の度合いを計測・比較可能な指標を提示することを目的とする。

3.就労スタイル別の時間分布

アクセスログの提供を受けたメールサーバーは、“裁量労働制”を導入している法人組織の研究部門部が、部署内で主体的に運用しているものである。このサーバーを日常業務で利用している就業者は、専門業務型裁量労働制の就業者74名、定時型労働時間制の就業者の計81名である。
一方、先の論文で詳述した通り、メールサーバーへのアクセスには一般にPOPとIMAPという2種類のプロトコル（通信規約）が利用されており、それぞれのアクセスログに記録されるIPアドレスは、使用しているメールクライアントにより意味が異なる。詳細分析の対象は、当該のメールサーバーを利用している全81名の就業者の内、様々なデータの信頼性に基づきスクリーニングした結果、最終的に類型化されたC1：保守型13名、C2：時間流動型19名、C3：空間流動型5名、C4：ポスト定住型10名の計47名の就業者に関するアクセスログであり、期間は2007年9月1日～2008年2月29日までの半年間（182日）、統計で578,677レコード（POP：450,821、IMAP：127,856）となる。

就労スタイルの類型別に改めて集計した平日（月～金）と休日（土・日・祝日）の執務行為の時間分布を図1に示す。グラフは、それぞれの類型に属する就業者全員について、アクセスログに記録されたIPアドレスが組織内（local）か外部（remote）か、利用されたプロトコルがPOP（pop）かIMAP（imap）かに基づいて集計された、各時間帯の平均執務率を示している。ここで、対象とした47名の就業者については、local（imap）はWebメール（Webブラウザを経由して間接的に閲覧する方法）による組織外からのアクセスと考えられる。従って、執務行為が特定の執務空間（オフィス）で行われていると判定されるのはlocal（pop）の部分であり、残りは外部のワークスペースで行われていると推定できる。グラフの上側に示した数値は、先の論文で定義したFα：空間流動化率について時間帯別に計算したものである。

図1 就労スタイル別の執務時間分布
C1: 保守型の就労スタイルでは、ほとんど全てのアクセスがlocal（ポップ）であることからも分かるように、就業者は特定の勤務時間を勤務（オフィス）で勤務を行なっており、その時間分布も概ね定時勤務時間に沿ったパターンを示している。また時間外勤務も基本的に休日の18〜20時台に見られる残業が主であり、休日はほとんど勤務を行っていないことが確認できる。

C2: 時間流動型の就労スタイルでは、平日の定時勤務時間内における平均勤務率は保守型と比較して全体的に多少低めであるものの、勤務時間終了後の勤務は高く、オフィス内または外部のワークプレスで勤務を継続している様子が伺える。また、休日も平均勤務率は20%程度であるものの定時勤務時間が反映されたパターンを示しており、その過半がlocal（ポップ）によるアクセスであることから、勤務を行う場合にはオフィスへと向き合う企業が多いことが分かる。

C3: 空間流動型の就労スタイルでは、平日の平均勤務率が早朝から深夜に至るまで高い値が維持されている。空間流動化率を観ると定時勤務時間内で約4割、時間外では概ね9割以上の勤務が外部のワークプレスで行われていることが確認できる。休日の平均勤務率も約40〜50%と他の種類と比較して著しく高く、そのほとんどが外部のワークプレスで行われていることが読み取れる。また、深夜の平均勤務率も相対的高い値を示している。細かく見てみると、休日は午後〜深夜に向けて平均勤務率が上昇しており、この種型の中には昼夜に逆転した勤務者がいる可能性も考えられる。

C4: ポスト定型型の就労スタイルでは、平日の定時勤務時間内における平均勤務率は概ね時間流動型と類似したパターンを示しているものの、空間流動化率は約20〜30%と高く、オフィス外のワークプレスへと勤務を分散させていることが分かる。勤務化率が高いことで、勤務時間終了後の平均勤務率もそれなりに高い値が維持されている。また、休日の平均勤務率も20%程度で概ね時間流動型と類似しているが、ほとんどが外部のワークプレスで行われており、その違いが明確である。

4. ワークプレスの空間分布

IPアドレス自体は単なる32ビット（IPv6では128ビット）の数値であるため時間的な定義を持たないが、Web上のデータベースサービスを利用することで、それらが所属する場所（経度・緯度）をある程度（市区町村レベル）まで推定することが可能である。そこで、これらのサービスを利用して、アクセスログに記録されたIPアドレスからアドレスポイント（ワークプレス）の位置を特定した。

アクセスログに記録されていたIPアドレスは総計2,749個であり、これらを経度・緯度（WGS84）に変換した結果、ワークプレスとして89の地点が割り出された。ただし、実際には別の場所であっても、同じ市区町村内の場合には同一の地点へと変換されることがある。また、モバイル環境のIPアドレスの場合には、割り出された地点が必ずしもワークプレスの場所と一致しない可能性がある。さらに、local（イマップ）によるアクセスは、記録されているIPアドレスがローカルドメイン（当該オフィス）のアドレスであるため、ワークプレスの位置を特定できない。

割り出された89の地点について、地理情報システム（GIS）を利用して当該オフィスを中心とした正方形図に投影変換した結果を図2に、さらに日本国内の沿岸を拡大して図3に示す。これを見ると、ワークプレスは概ねオフィスを中心とした都市圏近郊に分布していないことが分かる。さらに出張先と思われる地方都市や海外にまで及んでおり、遠くは海外からのアクセスも確認することができる。

5. 執務行為の時空間分布

以上の分析を踏まえ、執務行為の流動化の詳細を時空間分布図により把握することにする。

オフィスからワークスペースまでの距離（λ）を横軸として、期間中に就業者がそれぞれが各ワークスペースで行った執務量（η）を縦軸として、平日の定時勤務時間内・平日の定時勤務時間外・休日
に分けてプロットした散布図を図4に示す。なお、距離（d）は先の正方形体図（図2・3）を利用して地理情報システムにより計測し、アクセスマップを施業者・IPアドレス単位で再集計した時間帯を基準として計測するワークブレースの時点に割り当てた。なお、グラフは分布の詳細が判別できるように対数軸を用いている。そのため、多くの施業者では樹立時間帯が最も長いのはオフィスではあるが、距離が0であるためグラフには描かれていない。外部のワークブレースから推定されるアクセスログが全く記録されていなかった施業者は47名中C1:保守型4名、C2:時間帯型1名の計5名のみである。しかし、時間所属分布図にプロットすることができたのはC1:保守型2名、C2:時間帯型10名、C3:空間時間帯型2名、C4:ポスト定住型10名の計24名分、平日の定時勤務時間内で104箇所、定時勤務時間外で131箇所、休日で108箇所のワークブレースに留まった。これには、先に述べたようにloca(マップ)によるアクセスについては物理的な位置が特定できないためであり、これらのログについては執務量を個別のワークブレースに分配することは不可能である。

図4を観察すると、どれのグラフにおいても全体的に対角線の下側に分布しているが、その範囲内では波峰なく分散していることがわかる。すなわち、オフィスからの距離と施業での執務量の最大値の間には密な帯が見られるものの、ワークブレースの利用の仕方は個人差が大きく、個別のデータ間には明確な関係性を見出すことができない。

距離帯で見てみると、数十キロ圏にワークスペースが集中しており、そこでの執務量も大体のもの。図2・3でオフィスからの同心円を念頭に入れて考えれば、数十キロは自宅（SOHO）やモバイル環境、数百キロ圏は国内の出張先、数千キロ圏は海外と仮定できる。

就労スタイル別に見ると、C1:保守型2名に関して都市テレワークのワークブレースは数十キロ圏内に3箇所のみである。C2:時間帯型10名に関しては、左下側にプロットされるワークブレースが多く、計15箇所がそれらの距離帯に散在している。C3:空間時間帯型2名に関しては13箇所が特定されたが、全体として対角線沿いにプロットされるワークブレースが多く、それぞれの場所で日一杯執務が行われていることが推察される。C4:ポスト定住型10名に関するワークブレースとしては71箇所が特定され、それらは全体に広く分散しており、多くの地点を中心に断なく利用している様子が伺える。

平日の定時勤務時間内で定時勤務時間外のグラフを比較すると、施業からのアクセスが増加していることが確認できる。特に数百キロ圏からのアクセスは距離的に考えても欧米からであり、日本との時差が影響している。その意味では、C3:空間時間帯型のものではワークブレースの位置を特定できないloca(マップ)を利用して施業者が多く、「就労スタイル別の時間分布」の分析において見られた昼晩の逆転にともないアクセスがかなり含まれている可能性がある。

6. 執務流動の指標

これら空間的・時間的に分散した執務行為における流動化の度合いを計測・比較する方法（理論モデル）として、とりあえず執務量
に関する重心（=加重平均）を考えれば、就業者 j の流動化の指標 (Mj) は

\[M_j = \frac{\sum b_i t_{ij}}{\sum t_{ij}} \quad (1) \]

と定式化できる。ここで、bj はオフィスからワークプレース（W）までの空間の隔たり、tij は就業者 j がその都度行った勤務量である。また、(1) 式は日時 (d) にて算出し集計すれば、図 4 にて示したような平日（定時勤務時間内）・日平（定時勤務時間外）・休日それぞれの影響を個別に見極めることもできる。

\[M_j = \sum (\frac{b_i t_{ij}}{\sum t_{ij}}) \quad (2) \]

空間の隔たり (b) には様々な尺度が考えられるが、物理的な距離 (d) は理論的には無限なので、そのまま用いると M が値で無限に大きくなる可能性があり、流動化の指標として好ましくない。就業者の相対的な比較のためには、全ての勤務を当該オフィスのみで行っている場合には「0」、全ての勤務を無限遠のワークプレースで行っている場合には「1」になるように正規化されることを望ましい。そのためにも、空間の隔たり (b) は我々の心理的・認識的な“距離感”を反映したものでなければならない。すなわち、近場のワークプレースでの勤務行為は距離に比べて応分に見極められる一方で、遠方のワークプレースについては距離の差異が解消されるような尺度が必要である。

距離による減勢効果については、様々なモデルが提案されている。例えば空間の相互作用モデルでは、距離とアクリティブの量との間の関係を説明する手法として、要素間数、指数関数、ベータ関数などが提案されている。これらは一般に距離減勢関数と呼ばれ、関数形を決めるパラメータは実測データを利用して最適化することになる。しかし、ここで求められているのは距離と距離感との関係であり、距離とアクリティブの量との関係ではないが、また、図 2 に示されている通り、ワークプレースまでの距離と勤務量に明確な関係性はなく、最適化する方法でこれらの関数を当てはめても適合性が非常に悪い。

そこで、実空間から二重平面への写像を考えることで指標を 0 ~ 1 の範囲に正規化する方法（3）に、単位円として描かれたポアンカレ円板において、原点 (0, 0) と点 P = (x, y) の双曲的距離 (dp) は、

\[dp = \frac{\sqrt{x^2 + y^2}}{1 - (x^2 + y^2)} = \frac{2r}{1 - r^2} \quad (3) \]

と表すことができる。ここで、点 P はポアンカレ円板内に存在する

と示すことができる。ここで、点 P がポアンカレ円板内に存在するためには r ≦ 1 であり、点 P が外周に近づく (r → 1) について dp は無限大に発散する。すなわち、図 2 に示したオフィスを中心とした正方形区域の各ワークプレース（W）がポアンカレ円板内の点 P へと近づければ、r の空間的隔たり (b) として採用できる。

実際に計算では点 P の座標 (x, y) を具体的に求める必要はないので、dp と r の関係のみに着目すれば、(3) 式は図 5 のように表すことができる。ただし、dp は無名数なので、物理的な距離 (d) で直接置き換えることは適当ではない。そこで、物理的な距離 (d) で求めた全体の流動化指標で加重平均距離 (d) がポアンカレ円板における原点から外周までの中点 (r = 0.5) となるような換算率 (d) を設定する。

\[d = \frac{\sum \sum d_i t_{ij}}{\sum t_{ij}} \quad (4) \]

\[dp = c \cdot d, \quad c = \frac{4}{3 d} \quad (5) \]

以上の定義と従い算出した各就業者の勤務流動化の指標を図 6 に示す。棒グラフ上に示した括弧内の数値は、ワークプレースの場所が特定できないことから加味されていない各就業者 (localmap) による勤務量（時間）である。一方、就業者 47 名の localmap を除く総勤務量は 60,985 時間であり、そこから算出される d は 60.23 となった。これより、住宅 (SOHO) と呼ばれるワークプレースが既存の勤務型から生じる勤務を考慮した場所での処理化（M）は 0.5 なる。

算定された指標を個別に見極めてみると、概ね就労スタイルを反映した傾向ではあるが、特に C3：空間流動型の中に、就労スタイルと反した低い値が目立つ。これらの就業者は、localmap を利用した勤務量が極めて大きいことからも、それが指標に反映されていないことが一因と考えられる。最も低くなった P (4166) の流動化指標は 0.653 であり、深夜を通じて日常的に夜深い遠方のワークプレースで勤務を実施していることがわかる。一方で、C3：空間流動型の P (7093) や C4：ポスト定住型の P (2897) に見られるように、外れたワークプレース利用が進んでいるはずの就業者でも、それほど算定されている場合もある。これは、彼らのワークプレース利用が主にオフィス近辺に留まっているため、例えば住居の勤務量が多くても、時間的に見て必ずしも流動性が高いとは言えないことを意味している。逆に、P (6820)、P (2569)、P (8134)、P (9422) のように、C1：保守型や C2：時間流動型に分類されているが、近くのワークプレースにてそれなりに勤務を行っている就業者は、時間的に見れば相対的に流動化し始めていると言える。

7. まとめ
アクセシビリティを特に分析することで、勤務行為の流動化の実態が具体的に明確になった。その過程で、先の論文では見過ごされていた海外からのアクセスによる時間の影響について考慮する必要性

2559
も明らかになった。これは、如何に執務行為が時空を超えて流動化しているかの裏付けでもある。空間的な定位については、必ずしも高い精度ではないが、図2・3に見られるようにワークプレイスは極めて広範囲に分散しており、流動化を計測するという意味においては充分であろう。

また、ワークプレイスの空間分布まで加味しての執務流動化の指標により、就業者の間の相対的な比較も可能となった。ポスト定住化社会においては、居場所・プレゼンス地点（Point of Presence）に代わる居の概念として、プレゼンス領域（Field of Presence）が主張されており、提案した指標はこれに一つのディメンションを与える試みである。

しかし、先の定義に従えば、距離感を確定する換算率を如何に見積もるかにより、結果にも微妙な差が出てくることがある。従って、同一の換算率を用いた指標間での相対的な比較は可能であるが、絶対的な尺度という訳ではない。組織を超えた就業者の比較を行うためには、空間認識の立場から距離感を精査し統一する必要があるであろう。

社会の情報化は急速に進展しており、ニューナイテクス技術の普及とともに、建築・都市空間におけるアクティビティの多様化・流動化は益々加速している。社会環境の変化を踏まえ、現実世界と仮想世界の両方に目を向けつつより良い空間をデザインしていくことが、ポスト定住化社会には求められると言えよう。

本文論は、日本建築学会大会に投稿した桜井10に基づき、その後の研究成果を踏まえて、大半に加筆・修正したものである。なお本文論は、日本学術振興会 科学研究費補助金 基盤研究（C）「ポスト定住化社会における時空を超えたアクティビティの流動化実態に関する実証的研究所」の支援を得て行われた。

注1）昼夜を問わず定常的なログが記録され続けている利用者は、メールクラウドを常時起動したままにしていると推察され、就労の実態を判定できない。メールの転送設定を行っている利用者は、転送先での利用実態を把握できない。また、期間を通じてlocfitmapの記録がない利用者は、使用しているメールクラウドを特定できないため、アクセスしてきた場所について特定できない。

注2）就労スタイルの就業者構成は、C1：昼間労働5年、定時制労働時間制5名、C2：昼間労働19年、C3：昼間労働5年、C4：昼間労働9年、定時制労働時間制1名である。

注3）電子メールのアクセスの有無から判定された執務状況の平均値であり、会議中や移動中などアクセスを中断している時間は加味されないため、執務率はいずれの時間帯においても100%となる。

注4）変換にはMaxMind社（http://www.maxmind.com）のGeoIPサービスを利用した。ただし、全てのIPアドレスが市区町村レベルまで特定できた訳ではない。特に、国レベルまでしか判定できなかった場合、代表点の推定結果が著しいため、首都の位置で代替した。

注5）使用した地理情報システムはESRI社のArcGIS 9.3.1であり、任意の地点を中心とした正方形面積の作成が可能である。

注6）社会の情報化は「距離の死」をもたらすとも言われてきた。これは物理的な距離がアクティビティの具体的な説明たるえないことを意味している。つまり、空間的相互作用モデルの文脈に従ってこれらの関数の適用は本研究の主旨にもそわない。ただし、式(3)とこれらの関数の基本的な形状は類似しており、最適化の手法論を踏襲しなければ、採用することも可能である。

注7）これは、自身を中心として広がる世界が双曲平面的な距離感を知覚されているという仮定に基づく。文献6では視覚認識における空間表現と双曲幾何の関係に言及している。

参考文献
2）渡辺健一: 電子メールの利用実態から見た執務行為の空間・時間的な流動化に関する研究, 日本建築学会計画論論文集 第68号, pp.321-326, 2010.2
3）渡辺健一: 電子メールの利用実態から見た執務パターンと執務流動化の計測方法について, 日本建築学会大会学術講演要覧 E-1, pp.1095-1096, 2010.9
4）荒井芳雄・國本耕平・神谷浩夫・川口太郎: 都市の空間と時間 生活活動の時間地質学, 古今書院, 1998.10
5）石川義孝: 空間相互作用モデル一その系譜と体系一, 増書版, 1988.8
8）深谷健治: 双曲幾何, 岩波書店, 2004, 9

(2010年4月5日原稿受付、2010年8月6日採用決定)