IMPROVING THE EFFICIENCY OF PUBLIC FACILITIES MANAGEMENT:
ORGANIZATIONAL STRUCTURES AND MANAGEMENT PROCESS
IN MUNICIPALITIES

A large amount of infrastructures and public facilities were built with high economic growth in Japan. A lot of municipalities have had a large amount of public facilities since that time. Those huge amounts of public facilities have become deteriorated for several decades and have need of efficient management. However, the problem is that municipalities don’t know how to start the facilities management. Further, it is a problem that they have recognized the facilities management as work only of the maintenance department.

This study investigates organizational structures and process of construction, improvement, repair of each municipality to propose an efficient organizational structures and management process. The following three are the key problems for the facilities management efficiency improvement.

1. Unification and sharing of information related to facilities
2. Regular building deterioration check
3. Making of the communications between departments

Moreover, it is also important to advance making of the gross quantity reduction and the appropriate relocation of facilities.

Keywords: public facilities, facilities management, municipality, organizational structures, management process

1. Introduction

Following the Second World War, Japan witnessed a considerable development of its infrastructural facilities during the period of rapid economic growth. Today, the cost of repairing, improving, and maintaining these facilities, including the public facilities under the purview of municipalities, has increased. While many municipalities realize the need for public facilities management, they hesitate to take concrete steps toward improving infrastructure because of their fear of increasing costs, limited in-house expertise, and the lack of clarity regarding the kinds of changes required. Additionally, in many municipalities, maintenance and management is not the concern of the entire organization but rather the responsibility of the building repair department.

This study showed that public facility management includes all activities such as planning, operation, and maintenance, and the cause of the municipalities’ mismanagement was not only related to the limitations concerning technology and fiscal conditions but also to the municipalities’ structural organization. Moreover, the purpose of this study was to facilitate an explanation of the current state of the municipalities’ organizational structure and their approach to public facility management and to identify the organizational structures and management processes that are most efficient. Therefore, in order to investigate the organizational structure and management of Japanese municipalities, we examined 17 municipalities of the Kanto region of Japan *1.

2. Survey and method

2.1 Research method

The study employed the following research method.

We interviewed the staff of 17 municipalities of the Kanto region of Japan. In addition, we used data on the facilities under municipal possession, which was recorded in 2008 and 2009 as well as data on population and other basic data acquired from the municipal disclosure information on the municipalities’ web pages.

*1 R. A., Dept. of Architecture, Faculty of Sci. and Eng., WASEDA Univ., Dr. Eng.
*2 Assoc. Prof., Dept. of Architecture, MAEBASHI Inst. of Technology, Dr. Eng.
*3 School of Creative Sci. and Eng., WASEDA Univ., Dr. Eng.
*4 Prof., Dept. of Architecture, Faculty of Sci. and Eng., WASEDA Univ. Dr. Eng.
Determined the content of management services related to municipal facilities and identified the department that takes charge of such management services.

Documents related to organizational change, work segregation, and organization were obtained from municipalities.

With the cooperation of the municipalities, interviews were conducted with municipal officials.

Each surveyed municipality was classified on the basis of its organizational structure and function – facilities management – and the characteristics and circumstances of each classification were understood.

The processes employed in the facilities management across different municipalities were investigated and compared.

2.2 Characteristics of public facilities management in municipalities

In this study, we have classified municipalities’ facilities management into routine maintenance, building and repairing, and planning. The characteristics of each of these categories are as follows.

(1) Routine maintenance

Routine maintenance is defined as both handling of residents’ requirements and inspections undertaken by the personnel of departments (JD) that possess facilities. The former includes replacing fluorescent lights, fixing toilet taps, etc. There is no fixed criterion for classification of tasks as routine maintenance because the costs are paid from ordinary expenditure, and the tasks differ with each municipality. The budget for ordinary expenditure is planned based on past consumption for each fiscal year, and these account balances are documented by each facility’s personnel. The documentation includes regular inspection and deterioration diagnosis. How the expenditure is used and the extent to which the findings of the inspections are recorded and applied is different in each municipality and the facts are not clearly disclosed.

(2) Building and Repairing

This category of building and repairing concerns design and the supervisor as for facilities maintenance or construction. It also concerns the repair, improvement, and construction of buildings. Construction is classified into the following three subcategories. Fig. 1 shows this classification.

Optional contracted construction (No-bidding Contract) : This includes minor repair work (such as window glass repair), and the allowance that can be contracted is different in each municipality. The construction cost does not require bidding and be expended from the ordinary expenditure of the Jurisdiction Department (JD).

Small-scale construction with bidding : The scale of this construction is larger than ①, and are required a bid and estimate. It chiefly corresponds to the construction that ends in single fiscal year. The flow of construction will execute construction next year when the budget request is done and it passes.

Large-scale construction with bidding : Here, the scale of construction is greater than that of ②. A majority of these construction projects, such as seismic retrofit and big project, have multi-year spans. First of all, the content of construction is formulated on to mid/long-term plan (Master Plan or Implementation Plan, etc.), and construction is executed for several years.

<table>
<thead>
<tr>
<th>Municipality</th>
<th>The number of Facilities</th>
<th>Total floor area (sq. meters)</th>
<th>Population</th>
<th>Area (sq. kilometers)</th>
<th>Population Density (people/sq. kilometer)</th>
<th>Current Account Balance Ratio (10-year average)</th>
<th>Financial Capability Index (10-year average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>708</td>
<td>956,836</td>
<td>543,996</td>
<td>186.31</td>
<td>2919.84</td>
<td>90.92</td>
<td>1.02</td>
</tr>
<tr>
<td>B</td>
<td>377</td>
<td>838,018</td>
<td>411,721</td>
<td>71.63</td>
<td>5747.88</td>
<td>85.96</td>
<td>1.13</td>
</tr>
<tr>
<td>C</td>
<td>180</td>
<td>545,200</td>
<td>239,928</td>
<td>29.34</td>
<td>8177.51</td>
<td>88.11</td>
<td>1.22</td>
</tr>
<tr>
<td>D</td>
<td>189</td>
<td>275,310</td>
<td>211,904</td>
<td>21.53</td>
<td>9842.27</td>
<td>87.87</td>
<td>1.21</td>
</tr>
<tr>
<td>E</td>
<td>247</td>
<td>318,390</td>
<td>189,863</td>
<td>15.85</td>
<td>11978.74</td>
<td>87.44</td>
<td>0.92</td>
</tr>
<tr>
<td>F</td>
<td>121</td>
<td>237,551</td>
<td>178,654</td>
<td>20.46</td>
<td>8731.87</td>
<td>92.48</td>
<td>0.99</td>
</tr>
<tr>
<td>G</td>
<td>564</td>
<td>358,000</td>
<td>175,601</td>
<td>103.59</td>
<td>1695.15</td>
<td>94.27</td>
<td>0.97</td>
</tr>
<tr>
<td>H</td>
<td>300</td>
<td>370,000</td>
<td>172,547</td>
<td>24.38</td>
<td>7077.40</td>
<td>92.31</td>
<td>1.15</td>
</tr>
<tr>
<td>I</td>
<td>257</td>
<td>357,259</td>
<td>138,649</td>
<td>103.26</td>
<td>1342.72</td>
<td>88.05</td>
<td>0.89</td>
</tr>
<tr>
<td>J</td>
<td>160</td>
<td>330,000</td>
<td>134,253</td>
<td>10.73</td>
<td>1251.93</td>
<td>81.02</td>
<td>1.57</td>
</tr>
<tr>
<td>K</td>
<td>159</td>
<td>183,501</td>
<td>114,936</td>
<td>11.48</td>
<td>1080.85</td>
<td>94.94</td>
<td>1.00</td>
</tr>
<tr>
<td>L</td>
<td>125</td>
<td>155,757</td>
<td>110,458</td>
<td>11.33</td>
<td>9749.16</td>
<td>94.86</td>
<td>1.00</td>
</tr>
<tr>
<td>M</td>
<td>144</td>
<td>134,248</td>
<td>82,140</td>
<td>13.54</td>
<td>6066.47</td>
<td>91.56</td>
<td>0.84</td>
</tr>
<tr>
<td>N</td>
<td>216</td>
<td>179,344</td>
<td>80,788</td>
<td>73.34</td>
<td>1101.55</td>
<td>91.35</td>
<td>0.77</td>
</tr>
<tr>
<td>O</td>
<td>114</td>
<td>158,063</td>
<td>79,664</td>
<td>17.97</td>
<td>4433.17</td>
<td>84.79</td>
<td>0.86</td>
</tr>
<tr>
<td>P</td>
<td>68</td>
<td>121,347</td>
<td>76,149</td>
<td>6.39</td>
<td>1916.90</td>
<td>98.80</td>
<td>0.87</td>
</tr>
<tr>
<td>Q</td>
<td>81</td>
<td>120,853</td>
<td>58,640</td>
<td>10.24</td>
<td>5726.56</td>
<td>91.60</td>
<td>0.75</td>
</tr>
</tbody>
</table>

![Fig. 1 Definition of construction and repair](image-url)
years afterwards by the same flow as ② the above-mentioned.

(3) Planning

Planning is chiefly carried out for large-scale construction with bidding. That not only construction but also cost and scale require more than constancy is considered the "basic plan" and "master plan". These plans are described as follows.

3. Overview of the municipalities

Table 1 shows the general information of the municipalities, such as the number of facilities, population, and total floor area. Owing to their requests to remain anonymous, the names of municipalities have been denoted by alphabets. They are arranged according to their population. The municipal disclosure information of Municipality G uses the one on 31 March 2009 and the information of other municipalities uses the one on January 1 2009 in this investigation. Municipality A had the maximum population of 543,996 under its purview, while Municipality Q had the minimum population of 58,640 under its purview. Two municipalities (core city level) had a population of over 300,000 under them, and four (special city level) had a population of more than 200,000 under them. Municipality A had the maximum area of 186.31 square kilometers, and Municipality P had the minimum area of 6.390 square kilometers. The population densities of Municipalities A and B are not high because they have a large total area. The densities of Municipalities E, J, K, and P, whose population is less than 200,000, is high, which is reflected by the characteristics of a dormitory suburb. The densities of G, I, N, O, and Q, which are relatively far from the central region, are rather low. The fiscal condition can be analyzed on the basis of the financial capability index and current account balance ratio. Larger municipalities near the central region tend to have a higher financial capability index above 1, but municipalities far from the central region (I, N, O, and Q) have a financial capability index of around 0.7-0.8. However, the current account balance ratio of the municipalities, even those that have a financial capability index of above 1, is around 90%, which means that they cannot afford additional future expenses and might suffer financial reverses in more severe situations.

4. Classification of the municipalities' organizational structure

4.1 Definition of departments

This study classified tasks related to municipal facilities management into the following four departments

① Jurisdiction Department (JD): The department that uses a facility and requests estimate sheets and budget applications for construction
② Financial Department (FD): The department approves and allocates budgets
③ Property Administration Department (PD): The department that manages assets and maintains the asset book. This department is responsible for the direct management of public office building and public housing
④ Buildings and Repair Department (BD): The department that administers design, management, supervision of construction, or consigns these tasks to the private sector

Additionally, because the Administrative Management Department or FM Promoting Team administers facility management in some municipalities, for the purposes of this study, we have named the department the Integration Department (ID).

4.2 TYPE of organizational structure

In this study, the three departments besides the JD are grouped as the Three Related Departments. Further, the departments were classified into four TYPES on the basis of organizational structure. Each TYPE was defined depending on the grouping or separation of the Three Related Departments (Fig. 2).

① TYPE I: Each of the Three Related Departments is independent
② TYPE II: The FD and PD are considered to be one entity
③ TYPE III: The Three Related Departments are considered to be one entity
④ TYPE IV: The BD and PD are considered to be one entity

It was clarified to have changed from the municipality policy and work efficiency in this study though the above-mentioned four departments have functioned as an independent organization, originally.

Table 2 shows the organizational classifications of the 17 municipalities. TYPE I and TYPE II included eight municipalities, and the organizational restructuring in recent years was not confirmed. TYPE III included three municipalities, and their organizational restructuring was long term and based on the appropriate maintenance and effective use of the facilities under their purview. Municipality A underwent organizational restructuring like present in 2007; Municipality C underwent restructuring in 2004 and

<table>
<thead>
<tr>
<th>TYPE of Organizational Structure</th>
<th>Municipality</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE I</td>
<td>C, I, K, L, M, O, Q</td>
</tr>
<tr>
<td>TYPE II</td>
<td>F</td>
</tr>
<tr>
<td>TYPE III</td>
<td>A, B, J</td>
</tr>
<tr>
<td>TYPE IV</td>
<td>D, E, G, H, N</td>
</tr>
</tbody>
</table>
Municipality G in 2007. Six municipalities were classified under TYPE \(N \), and Municipality F and Municipality O did not change their organizational structures. Municipality P underwent organizational restructuring to introduce facilities management in 2007 and Municipality B and Municipality Q underwent organizational restructuring like present in 2008.

4.3 Trends in the organizational structure classification

Table 3 presents the staff strength of each municipality and the specifications of the facilities they were in charge of. Columns A, B, and C of the Table contain the number of departments handling the work related to facilities management. Municipality J, which is a large municipality, has a staff-to-facility management ratio of 0.018, and Municipality M, which is a small municipality, has a staff-to-facility management ratio of 0.041. From the data, it appears that Municipality M conducts facilities management efficiently. However, it did not do like the organizational restructuring where both municipalities also had the organizational structure of TYPE I.

The classification of municipalities A, C, and G, under TYPE \(\bar{I} \), suggests that the BDs in these municipalities have greater responsibilities that those of other municipalities. In municipalities A, C, and G, the BDs manage tasks such as planning maintenance, providing technical support for budget approval, and construction record maintenance in addition to the regular task of undertaking building and repairs work. Therefore, the staff assignment required for such work is carried out under TYPE \(\bar{I} \). On the other hand, the municipalities having other TYPEs of organizational structures only carry out the regular task of building and repairs work. This is a prominent difference between TYPE \(\bar{I} \) and TYPEs A, B, and D. In municipalities I, M, and Q, the PDs carry out a large number of facilities management tasks (nearly 50%). In addition, although the organizational structures of municipalities I and Q are different, their PDs use the database system and carry out advisory tasks related to construction information recording and facilities maintenance planning. In other words, the PDs of these municipalities conduct facilities management as the BD does under TYPE \(\bar{I} \).

5. Management Processes in Municipalities

In this chapter, the workflow of municipalities' facilities management is examined. Both typical workflow and deliberately atypical workflows are analyzed. Typical workflow refers to workflow that has not been changed for several years and that is still used by most municipalities. The workflows that have been changed conspicuously for more efficient management are covered in subsections 6.2-6.5. As the kinds of actions in the workflow, small letters are represented as typical one in typical workflow, and capital letters are represented as particular new actions of the samples.

5.1 Typical maintenance and management workflow

This section presents examples of maintenance and management workflow, especially with regard to small-scale construction with bidding. First, Fig. 4 presents a simplified workflow of the municipalities' typical maintenance and construction tasks.

<table>
<thead>
<tr>
<th>Municipality</th>
<th>①Staff strength in the BD</th>
<th>②Staff strength in the PD</th>
<th>③Staff strength related to facility management</th>
<th>④The number of Facilities</th>
<th>⑤Total floor area (sq. meters)</th>
<th>⑥Total staff strength</th>
<th>⑦Total staff number of facilities per FM staff</th>
<th>⑧Floor area per staff FM staff</th>
<th>⑨% of the number of FM staff in that of all the staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>41</td>
<td>14</td>
<td>5</td>
<td>60</td>
<td>708</td>
<td>956,836</td>
<td>2900</td>
<td>11.8</td>
<td>15,947</td>
</tr>
<tr>
<td>B</td>
<td>37</td>
<td>13</td>
<td>14</td>
<td>64</td>
<td>377</td>
<td>838,018</td>
<td>2136</td>
<td>5.89</td>
<td>13,094</td>
</tr>
<tr>
<td>D</td>
<td>16</td>
<td>8</td>
<td>5</td>
<td>29</td>
<td>189</td>
<td>275,310</td>
<td>1202</td>
<td>6.52</td>
<td>9,493</td>
</tr>
<tr>
<td>E</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>23</td>
<td>247</td>
<td>318,390</td>
<td>1103</td>
<td>10.74</td>
<td>13,843</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>8</td>
<td>14</td>
<td>30</td>
<td>121</td>
<td>237,551</td>
<td>886</td>
<td>4.03</td>
<td>7,918</td>
</tr>
<tr>
<td>G</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>28</td>
<td>564</td>
<td>358,000</td>
<td>788</td>
<td>20.14</td>
<td>12,786</td>
</tr>
<tr>
<td>H</td>
<td>16</td>
<td>12</td>
<td>5</td>
<td>33</td>
<td>300</td>
<td>370,000</td>
<td>1150</td>
<td>9.09</td>
<td>11,212</td>
</tr>
<tr>
<td>J</td>
<td>20</td>
<td>7</td>
<td>1</td>
<td>28</td>
<td>160</td>
<td>330,000</td>
<td>1101</td>
<td>5.71</td>
<td>11,786</td>
</tr>
<tr>
<td>K</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>13</td>
<td>159</td>
<td>183,501</td>
<td>719</td>
<td>12.23</td>
<td>14,115</td>
</tr>
<tr>
<td>M</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>20</td>
<td>144</td>
<td>134,248</td>
<td>482</td>
<td>7.2</td>
<td>6,712</td>
</tr>
<tr>
<td>N</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>17</td>
<td>216</td>
<td>179,344</td>
<td>452</td>
<td>12.71</td>
<td>10,550</td>
</tr>
<tr>
<td>O</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>114</td>
<td>158,063</td>
<td>502</td>
<td>9.5</td>
<td>13,172</td>
</tr>
<tr>
<td>P</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>19</td>
<td>125</td>
<td>155,757</td>
<td>502</td>
<td>6.58</td>
<td>8,198</td>
</tr>
<tr>
<td>Q</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>10</td>
<td>81</td>
<td>120,853</td>
<td>377</td>
<td>8.10</td>
<td>12,085</td>
</tr>
</tbody>
</table>
JD contacts BD and requests repair and improvement when there is an accident in facilities, or when residents (users) make a complaint of facilities (a). The BD prepares a rough estimate (b.) for the JD for various construction projects. On the basis of the estimate prepared by the BD, the JD completes a budget request from the BD for the maintenance requirements (c.). The FD receives the budget request from the JD and examines it, considering the current year’s tax revenue, etc. The FD then adjusts budget allocations to carry out budget approval (d.). The JD then requests the BD to execute the construction of the approved projects (e.). Following this, the BD prepares the design or design consignment, conducts construction management, and undertakes the supervision of the consignment etc (f.). After the construction is completed, it is inspected by the gauger. The JD maintains the documents related to the design of the construction (g.), and the PD records the changes in the property and manages the ledgers of the properties (h.). However, this process could encounter the following problems:

1) Insufficient information regarding facility deterioration and the construction history of facilities (Deciding an appropriate level of priority is impossible. The construction time and cost cannot be leveled.)

2) Technical dissatisfaction during the budget approval phase due to disagreements between the JD and FD

3) Impossibility of the efficient use of facilities and the fear of increased costs due to insufficient information sharing with other departments

5.2 Case Study 1: Deterioration diagnosis and prioritization by the BD

Municipality J surmounted the aforementioned problems of insufficient information and dissatisfaction using a technical approach. See Fig. 4 to survey Municipality J’s workflow. In Municipality J, all the facilities were regularly inspected by the BD to check for simple diagnostic deterioration (A.) and ordering priority (B.). This facilitated the compilation of information regarding any deterioration, appropriate prioritizing, and the equalization of construction costs and the time required for construction. Moreover, the FD and BD jointly managed the effective prioritization of facilities. However, the BD had to undertake a great load of responsibilities to ensure that the inspections for simple diagnostic deterioration were conducted regularly in addition to its regular tasks. Therefore, whether simple diagnostic deterioration inspections are conducted regularly is debatable. Even if the strength of the BD’s staff increases, as in TYPE Ⅲ.

5.3 Case Study 2: Building inspection by the JD

In the second case study, the clerical staff (not engineers) of the JD conducts building inspection (A.). The BD conducts simple diagnostic deterioration (B.) is performed by where deterioration is most severe (see Fig. 4).

As the effect of the facilities management approach adopted in this case study is similar to the one in Case Study 1, the BD’s workload can be reduced by planning the number of facilities to be inspected for the deterioration diagnosis beforehand. However, because the inspector is not an engineer, the adoption of the following measures is necessary.

1) Organization of training and liaison meetings involving the inspector

2) Appropriate analysis through data collection and study of data related to deterioration

3) In both the case studies, the database system has been employed to manage the data collected for the facilities, such as facility outline, deterioration, construction history, simple deterioration diagnosis, and building inspection. Moreover, (2) can be easily implemented by using the database system.
5.4 Case Study 3: Maintenance budget regulation by the BD

Generally, the JD regulates the construction budget for the repair of municipalities’ facilities if the budget is below a certain scale. However, in Municipality B, the BD regulates the budget of all facilities for long-term risk reduction and standardization. The workflow of Municipality B is shown in Fig. 5.

In this municipality, simple deterioration diagnosis is consigned to a private specialist. The BD receives the result of the diagnosis, after which it orders the priorities. Consequently, the facilities requiring greater priority undergo maintenance construction using the BD’s budget, soon after prioritization. This process has the following advantages:

1) The BD’s technical approach to prioritization facilitates the standardization of the facilities.

2) Because a specialist conducts the simple deterioration diagnosis, long-term risk reduction can be ensured using an engineer’s expertise. However, the diagnosis of all the facilities incurs a large cost.

5.5 Case Study 4: All agency management by the ID

The ID, founded by the integration of the BD and PD, deals with all budget requests concerning the facilities in Municipality G although the JD was originally responsible for the approval of budget requests (Fig. 6). The ID deals most with system information for facilities management. Information such as an outline of the specifications of facilities, deterioration of facilities, the energy consumed by facilities, and construction history is compiled in a system database, the advantages of which are mentioned below:

1) Since the budget request is approved after an analysis of the data collected by using system information, budget execution becomes impartial and the construction costs and time required for construction become more attuned.

2) The ID facilitates more efficient overall determination of the various processes of facilities management by overcoming the barriers between the four main departments.

3) Construction can reduce the problem under execution by checking data after the budget is approved.

4) The analysis and evaluation of the collected data can be reflected in the plans for the future.

5.6 Summary of the facilities management approach

Table 4 is a representation of the approaches described above. In addition to their typical work related to maintenance and management, the municipalities have to undertake various other tasks, such as compiling an information database, planning maintenance, simple deterioration diagnosis, facilities inspection, and the integration and regulation of repairs costs. Table 4 shows that municipalities classified under TYPE I do not adopt the facilities management approach. Contrastingly, the municipalities classified under TYPE III adopt the progressive approach of facilities management. The municipalities under TYPE III aim to implement long-term and efficient maintenance by means of organizational restructuring. In addition, the progressive approach promotes communication between departments. By integrating three departments, the BDs participate in facilities maintenance and site planning for the municipalities. The municipalities under TYPE II and TYPE IV also adopted a progressive approach as they undertook building inspection regulated by the JD or a person in charge of facilities (mainly clerical staff). Municipality G schedules it execution for the next.

The facilities management approach adopted by the six municipalities classified under TYPE IV have three advanced municipalities (E, G, P) and three municipalities that do not undertake facilities management (D, H, N). The former three underwent organizational restructuring.

Table 4 Approach of facility management

<table>
<thead>
<tr>
<th>Organizational Structure</th>
<th>TYPE I</th>
<th>TYPE II</th>
<th>TYPE III</th>
<th>TYPE IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Securing of maintenance budget by</td>
<td></td>
<td></td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Building Inspection</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Deterioration Diagnosis</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Information Sharing-DB (Construction History)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Maintenance Plan-LOC</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Information Sharing-DB (Running Cost)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Facility White Pacer</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

--- 672 ---
for facilities management, and the latter three continued their operations in the conventional organizational structure as did the municipalities under TYPE I. Furthermore, a common attempt of the municipality that revises the organizational structure is systematization of facilities information.

6. Summary

This study aimed to analyze the main issues concerning public facilities management of the organizational structures and management work processes of municipalities in Japan.

We classified the 17 municipalities examined into four TYPEs (I, II, III, and IV). The municipalities under TYPE III adopted a progressive approach and undertook facilities management in order to revise their structures to facilitate cost efficiency, long-term and appropriate maintenance, etc. The organizational restructuring of these municipalities is similar to the organizational restructuring that Tokyo had actively promoted during its high-growth period.

It is also important to accommodate the differences in the approaches adopted toward facilities management on prefectures and municipalities. In the municipalities, the public service is far closer to resident as compared to that in prefectures. Therefore, the facilities management of the municipalities is considerably more sensitive and difficult than that of the prefectures.

Moreover, the municipalities under all other TYPEs but TYPE III need to prepare for facilities management because tasks such as execution by the committee for rising above each department wall, liaison meetings for consensus building, and training clerical staff for facilities management are important. After facilities management is introduced, building inspections, maintenance of facilities information, structural organization for appropriate maintenance, evaluation repairs, and data collection for deteriorating facilities are tasks of paramount importance. Additionally, because of the amount of work, and financial matters, when simple deterioration diagnosis of all public facilities is difficult, it is effective to conduct a building inspection of a short-term regular cycle by clerical staffs. By doing so, it becomes possible to reduce the number of object facilities for degradation diagnosis and to encourage participation enthusiastically to all the staffs.

Budget being distributed to the department of the loud voice in typical management work flow of TYPE I are difficult an impartial budget allotment to all departments side. Thus, a revision of the organizational structure and consensus building system is also necessary in such a municipality in order to facilitate lateral communication between departments. After construction is completed, it is very important to make the unification management database and the accumulation of information related to the construction.

Ensuring effective facilities management requires regular deterioration diagnosis, sharing of information related to facilities, and inter-departmental communication. However, this cannot be achieved within a short period. Moreover, the immediate introduction of facilities management is necessary in situations where a municipality's facilities are threatened by increasing deterioration and the municipality has lower tax revenues. Effective public facilities management necessitates the introduction of a system that judiciously analyzes facilities and the existence of a presiding department that prepares a management plan based on the analysis and evaluation of compiled data.

Acknowledgment

This research has been supported by the Grant-in-Aid for Scientific Research (A) "Research on Establishing Public Facility Management System" under Grant No. 20560594.

Notes

*1) The samples of 17 municipalities of the Kanto region were selected on the basis of two criteria: the municipalities' commitment to adopt progressive public facility management, and their offer for cooperation on research regarding organizational structure and management processes.

*2) The municipalities prepare three plans: basic plan, master plan, and implementation plan. The basic plan covers a 10-year schedule, and it concerns directionality rather than the provision of an actual business. The master plan is based on the statistical documentation (satisfaction and usage, etc.) of the basic plan in numerical targets. It is divided into one five-year plan each for the former term and the latter term of the above mentioned 10-year development schedule. It is updated regularly on the basis of the compiled results of the former term. The implementation plan comprises the construction factors related to the basic plan and master plan. Additionally, tentative estimation and technical advice for building and repairing are part of the implementation plan.

*3) Financial capability index shows the financial strength of the municipalities and is calculated by dividing the average of the standard financial revenue by the standard financial demand for the last three years. A higher financial capability index indicates better self-sustainability. Municipalities with a financial capability index beyond 1 are regarded as having strong finances, and are deemed not to be dependent on government allocations. The average for ten years is shown here to show the fiscal condition in the last decade.

*4) Current account balance ratio represents the financial soundness and flexibility of the fiscal situations of municipalities. It refers to the percentage of necessary expenses, such as personnel costs and bonds, accounting for current ordinary resources. Any Figure above 100 means a deficit, that beyond 80% means that the municipality cannot afford the use of existing resources, and that beyond 90% means a severely stressed fiscal condition where municipalities suffer from other expenses (e.g. repairs and improvement)

*5) The types of organizational structures are examined by separating the three departments – PD, PD, and BD – other than JD. This is because JD possesses
its own facility and provides its residents public services, and is different from the department undertaking facilities management. On the other hand, FD, PD, and BD undertake facilities management for all departments. This research focuses on the roles of and the communication among these three departments (FD, PD, and BD), which are a significant part of facilities management, to clarify intra-municipality relationships and the differences therein across municipalities.

References
1) National Institute for Land and Infrastructure Management : NILIM Research Project Report, 2006.1
4) JFMA : About The Facilities Property Strategy in the Municipality, 2008
7) BELCA : 建物のライフサイクルと維持管理, 2007.7
8) JFMA : PRE 公的不動産をとりまく状況 公共施設資産を次世代に継続する FM 提言, 2008.8
9) 自治省 : 地方公共団体の総合的な財政分析に関する調査研究会報告書, 2000
10) 東京都町村自治調査会 : バランスシートと行政コスト計算書を活用した自治体経営, 2002
11) JFMA : 公共施設財務 - 公共施設は生き残れるか - PART 2, 2004.4
12) JFMA : 民間における「ファシリティマネジメント」の普及状況に関する調査報告, 2003
13) 萩澤昌和 : ファシリティマネジメントが変わる経営戦略, NTT 出版
14) JFMA : パブリック FM 実践ガイドブック, 2008.10
15) 鈴木, 円満, 萩原, 松谷 : 公共不動産 PRE 指標の可視化の試み (その 4), 日本建築学会学術講演会概要, F-1, pp.1233-1234, 2010

和文要約
日本では、戦後から高度経済成長期を経て大量に社会資本ストックが整備され、今後それらのストックの修繕・更新・建て替えの必要が増えてきている。自治体保有の公共施設においても同様の事象が見られ、これを良質な状態で後世代に継承するためにも保有施設全体を見直し、運営・管理の効率化を積極的に行いつつ必要がある。しかし、沢山の自治体では公共施設マネジメントの必要性を認識しながら業務量の増加や一時的なコスト増への懸念、何をどう変えるのかといったノウハウの不足を理由になかなか具体的な活動及び形で現れていないのが現状である。なお、施設の運営・管理というと維持保全、修繕、改修といった営繕業務が主に認識されることが多い。自治体全体の課題である認識には未だに乏しい現状も懸念される。そこで本研究では地方自治体が公共施設マネジメントに積極的に踏み込んでいない原因は技術や財政状況の他に自治体組織内部に原因があるのではなく、自治体の業務体制及び組織の現状を明らかにし、効率的な組織・業務体制について考察することを目的とする。

調査を行った結果、自治体の組織構造と施設マネジメント関連業務のプロセスは様々であり、その効率にもバラツキがあった。施設マネジメントの効率的な取組みをすると自治体間の差異自体に組織内や業務プロセスの問題も確認できた。大きな問題として専門家情報提供及びコミュニケーションの問題、データベース価値の問題、自治体内部認識の問題を挙げられる。

(2011年7月10日依頼受理, 2011年12月9日採用決定)