早川家住宅における建築関係史料と濃尾地震後の耐震対策について

A STUDY ON HISTORICAL MATERIALS OF ARCHITECTURE AND SEISMIC COUNTERMEASURES ADOPTED AFTER THE NOBI EARTHQUAKE OF HAYAKAWA RESIDENCE

Hayakawa residence is a rural mansion that's preeminent modern Japanese-style house in Gifu prefecture that was severely damaged by the Nobi Earthquake in 1981. It can be confirmed from the historical materials and the remaining buildings, that during reconstruction, the head of the family, Shuzo Hayakawa, who had deep insight and intuition for architecture, was the one who decided planning and designing. Furthermore, it's clear that the adopted construction method of foundation and wooden frame took quake-resistance into account. Hayakawa residence is a pioneering example of wood frame construction modernizing, which takes quake-resistance into account.

Keywords: Modern Japanese-style houses, Shuzo Hayakawa, Historical material, Nobi Earthquake, Seismic countermeasure

近代和風住宅, 早川周造, 文献史料, 濃尾地震, 耐震対策。

1. はじめに

早川家住宅は、岐阜県尾張の近代和風住宅であり、農村邸宅である「写真1」。筆者らは、岐阜県近代和風建築総合調査にかかわったことがあり、田園地帯にある地主層の大邸宅を、当時の一般的な農家と区別して、農村邸宅と称することにした。一般的には、民家を農家と町家に分類しているが、近代以降の優れた意匠性を備えた大邸宅を、農家とは同一視できなかったためである。早川家に限らず、同様の大邸宅の当主の多くは、実業家や大商人との交流もあり、高い教育を備えた文化人で、近代数者者でもあった。そして、未だ建築家としての職能が確立する以前は、大邸宅の建築に際して、大工よりも、むしろ建築に造詣の深い当主の意向によって、平面計画、意匠計画が行われたと考えている。良い意味での善悪道具である。早川家には、住宅建築に際して、そのような当主の関わり方を具体的に知ることができ文献史料が豊富に残されている。加えて、早川家は、明治24年（1881）の濃尾地震で甚大な被害を受け、主屋他を主要な建物が震災直後に再建された。再建に際しては、先駆的耐震対策が講じられ、近代初期における耐震対策を、具体的に知ることができた。

早川家住宅に関する既往研究としては、中村昌生による『和風建築の遺伝論文がある(以下中村論文を略す)』。その中で、文献史料をもとに、濃尾地震の被害と再建にかかわる早川家主屋の耐震対策、平面計画の変遷や、設計等とのかかわりの中で決定された意匠的特徴が、詳細に述べられている。また、耐震対策については、清水隆文・河田喜博による概要の報告もある。しかしながら、当時用いられた文献史料のほかにも、多くの未整理史料があり、最近になってこれらの史料の整理が終わった。そして、これらの史料を基に、

Photo1 The Main Building and the Western-style Building of Hayakawa Residence
早川家住宅主屋・洋館全景

*1 名古屋工業大学大学院社会工学専攻 教授 工博
*2 名古屋工業大学大学院社会工学専攻 博士後期課程
*3 (公財)文化財保護機構保存技術研究所 博士(工学)

Prof. Dept. of Architecture, Graduate School of Socio Engineering, Nagoya Institute of Technology, Dr.Eng.
Grad. Student, Graduate School of Socio Engineering, Nagoya Institute of Technology
The Japanese Association for Conservation of Architectural Monuments, Dr.Eng.
に分析することによって、多くの新知見を得ることができた。本研究は、早川家住宅に関する文献史料の徹底的調査と、現存建築の現地調査をもとに、早川家住宅の近代化変更の特質を明らかにすることを目的とした。本稿は、第1報として、早川家所蔵史料の中から建築家関係史料の全容を紹介するとともに、特に重要な史料1『記録帳』他を用いて、濃尾地震の被害と再建における耐震対策について、詳しく考察するものである。

2．早川家住宅の概要

早川家住宅は広島市平田町に所在し、多くの参詣者にわたりに行われる所蔵資料の参観者の参詣の側面に建つ。平田町は、東西を木曽川、長良川、田倉川に挟まれた三角洲の中にあり、周囲を堤防で囲んだ輪中地域である。

明治24年濃尾地震当時の当主、十七代早川周氏、明治16年10月に、父である長尾彥昌忠が死去したため、若くして家を継いだ。

地元海津が歴史的な洪水で疲弊している要衝を憂慮し、木曽川治水のために尽力した。また、明治30年6月10日には、多額納税者の非道により、貴族院議員に当選した。一方、海津、利得で十号とし、茶人との交流も深く、明治37年には、名古屋春日町に煎茶趣味の別荘「碧露」も営営している。

3．文献史料

早川家には膨大な文献史料が所蔵されているが、その中から建築関係史料をまとめると、表1のごとくなる。史料1『記録帳』は、明治25年12月から明治43年5月にかけて、濃尾地震後の被害と、再建に関する諸記録、再建後の水害等災害、および当家にかかわる重要な事項を詳細に書き留めたものである。史料2から18は、震災後の復興に関する建築関係者、材料明細、各工事の経費等に関する文書および帳簿である。史料19から32は、早川周造と茶匠（官休時隔一定一指、村瀬立中、戸倉宗晴）等との間で交わされた文書である。これらの書簡から、茶匠の指導・助言をもとに、主屋や離れの細部意匠を検討した過程を読むことができる。史料33から84は、屋敷全体、主屋、離れ、土蔵等に関する図面である。このうち、史料41・46・69は、中村文調に掲載されているが、現在では所在が確認できない。史料85は主屋建築中の写真である。以上の文献史料から、早川家における震災後の建物の建設経緯を詳細に読み取ることができる。

4．濃尾地震の被害

史料1『記録帳』は、中村文調においてもその大半が引用されているが、本稿においても考慮の中心となる重要な文献であるので、関係する部分を別に文献に忠実に記しておく。

まず、冒頭において、このとりに、濃尾地震を契機に、この記録帳が作成されたことが記されている。

（表紙）
元川二千五百五十二年
記録帳
明治十三年五月十三月

（本文）
記録帳必要ナル今更営々/（印改行、句読点筆者、以下同）
スルヲ候タズ。然ルニ予又/古書類多シト亜（雅）トモ、一

定／続編シタル記録ナシ。故ニ／明治十四年十月十八日ノ
大震災ヲ記元トシ、一ノ家ノ重要ナル事件ヲ、此／帳簿＝
記録スルヲトス。

明治十五年十二月／十七代/早川周造/箚議：
次に濃尾地震の状況が記され、早川家庭に関する震災時の建
物について、被害状況に沿って、大きく「全倒ノ部」、「半倒ノ部」、
「無害ノ部」に分類したうえで、各建物の由来と被害状況が、簡潔
に記されている。

「 森田明治十四年十月十八日午前十一時、発生ノ声ト共ニ、前
古未聞ノ激震ヲ生シ、地裂、水潰、沙出、復カニ五六分ノ間ニ、
幾ノ万人ノ命、幾ノ家ノ屋ヲ殺シ、倒壊シ、其惨害ノ態、飛、ノ
尾、三、勢、江、越、信ノ各国ニ及ビ、震動ハ五畿、東山、東
海、北陸、山陰、山陽ノ諸道ニ及ビラトムノ。此ノ日、余カ家
宅ノ倒壊センモノヲ挙クル、左ノ如シ。

全倒ノ部
一 書院 旧家宅西ノ方
明治十一戊寅十一月九日、十六代父理衛衛宅ノ發ヲ水ヲ、
添木ノ屋ヲ築ク、屋ヲ初成ス、外観
華美ヲ主トシ、地盤ヲ堅固ニ注意ヲキメ、新築ヲ図（図）
ラス、第一ニ倒壊セリ、後Refer注意スペシ。

一 裏ノ庭 附街宅外館以下
建築年代不詳、曾祖父二代ナリス。此/在库ノ、道具ヲ織
セリ、織物館ヲ設け、

一 絹庫 旧家宅東ノ方
建築年代不詳、古朽ヲ修ヲセントシ、計画中。

一 玉井尾形 旧家宅東ノ方
千カ二年建築セシモノ、四本柱ニシテ/ナクスシカイレイ
ラニ故ナラ

一 味噌庫 絹庫南ノ方
建築年代不詳。

一 長屋門 本宅ヨリ辰ノ方長拔間
建築年代不詳、朽壊セリ、此長屋門ヲ設ノ、仮宅ヲ設ケテ
リ。

一 大工部屋 飯米倉ノ辰已ノ、東ノ
間ヲアリ

千カ三年度ニ新築セシモノ。

一 味噌庫 中庫飯米倉ノ
間ヲアリ

建築年代不詳。

一 玉井尾形 本宅辰ノ方、味噌庫
西ノ方

明治テ時水仕ザルモノ、新築テ不詳。

一 長屋門ヨリ辰ノ方至ヨル隔間セ

半倒ノ部

一 本宅
建築年代未詳。唯曾祖父ヲ仰、薬師ヲ建テ爾カッストセシノ
傳アリ、何レ百弐ノモノヲナラタ。/右ハ老朽ヲ共ニ、
修繕ヲテ/多遜ヲヲ見込アルガ為、其/又市屋ヲル事
トリ、廿五年四月/取扱キ、今安八郡西島村佐藤/丑松カノ
建築ヲ命、乃カ旧宅ヲナリ。

一 裏ノ座敷 旧家宅北ノ方
祖父ノ建築セシモノ、裏ノ庫ヨリ東ニ/里出しヲリタルモノ
ナルニ、裏ノ庫倒壊/シテ比座敷ノ倒壊セラハ不意ヲ/ナ
早川家建築関係史料

号	記載	名称	番号	日付	写真	提供者
1	私人蔵	名称	100	1892・12・18	高崎市立図書館	
2	写真	設計者	100	1892・12・18	高崎市立図書館	
3	手稿	宣伝	100	1892・12・18	高崎市立図書館	
4	写真	原案	100	1892・12・18	高崎市立図書館	
5	手稿	5	1892・12・18	高崎市立図書館		
6	手稿	5	1892・12・18	高崎市立図書館		
7	手稿	5	1892・12・18	高崎市立図書館		
8	手稿	5	1892・12・18	高崎市立図書館		
9	手稿	5	1892・12・18	高崎市立図書館		
10	写真	原案	100	1892・12・18	高崎市立図書館	
11	写真	原案	100	1892・12・18	高崎市立図書館	
12	手稿	5	1892・12・18	高崎市立図書館		
13	手稿	5	1892・12・18	高崎市立図書館		
14	手稿	5	1892・12・18	高崎市立図書館		
15	手稿	5	1892・12・18	高崎市立図書館		
16	手稿	5	1892・12・18	高崎市立図書館		
17	写真	原案	100	1892・12・18	高崎市立図書館	
18	写真	原案	100	1892・12・18	高崎市立図書館	
19	手稿	5	1892・12・18	高崎市立図書館		
20	手稿	5	1892・12・18	高崎市立図書館		
21	手稿	5	1892・12・18	高崎市立図書館		
22	手稿	5	1892・12・18	高崎市立図書館		
23	手稿	5	1892・12・18	高崎市立図書館		
24	写真	原案	100	1892・12・18	高崎市立図書館	
25	写真	原案	100	1892・12・18	高崎市立図書館	
26	手稿	5	1892・12・18	高崎市立図書館		
27	手稿	5	1892・12・18	高崎市立図書館		
28	手稿	5	1892・12・18	高崎市立図書館		
29	手稿	5	1892・12・18	高崎市立図書館		
30	手稿	5	1892・12・18	高崎市立図書館		

Table: List of Historical Materials on the Architecture of Hayakawa Residence
リ。廿五年七月、本宅地ノ書上ケト全トニ、修築ヲ加へ、
セリ上ケ、巌上ケナゲン。/下ニ焼入所ヲ設ケ、今ニ存置ス。
一 辰巳庫 旧本宅ヲ
方
建設年度未詳。/此土ヲ目ヨリ北ノ方ニ移シタ。洋館ト
ノ隣ノ庭ヲ同時ニ出来セリ。大工治郎吉。 明治廿九年十二
一月ニ日ヲ移ム。
一 飯米庫 旧本宅南ノ方
一 利徳庵 旧本宅末申ノ方
附勝手 西ハテ千六年度、利徳
塀ヲ造ヲルモノ
祖父、父共謀シテ建設セシモノノ。野寺村田中/宗匠ヲ好(京
都府奈良(鍬)鸞ノ四天王鶏事)元部屋ニ/附属シテ
モノ。又隣ノ徳ヲフチ建設シテモノノ。/万延元年己申四月建
設。/明治廿八年、大井ノ修築ヲ加ヘ、庭前ニ門ニ内庭、築々
書き。
一 西ノ庫 旧本宅虎ノ方
父理右衛門建築ニ係ル。道具ヲ除キ、/石垣ノ堅牢ヲヨ
リ、倒壊ヲ防矣。
此土ヲ明治廿九年、再度ノ水害ヲニ退セリ。依テ大
修築ヲ加ヘニ。/新築ノ如クヲナリ、/地盤ヲ徳ヲヨリニ二
寸ニ分高メ、土台ヲ建テトトシ、堅牢ヲせシ。明治
廿九年十月十五日、柱立ヲナサス。
一 鄼下 今岡家ニ西ノ庫
下
父理右衛門建築ニ係ル。
無名之部
今日廃 明治十年
附 伊見門
腰 付 父理右衛門建築
骨盤
予カ九月ニ月ニ月ニ月ニ月ニ/象ヲ等ノ家ニ家ノ在ナリモノ
爷テ前ノ根ノ特別ヲ軽ノヲヨル。
一 裏門
余カ九月ニ月ニ月ニ月ニ/象ヲ等ノ家ニ家ノ在ナリモノ
前ノ堅牢ヲヨリ、/石垣ニ堅牢ヲヨリノ。
以上の被害状況ト早川周衛が考えた理由のうち、耐震的観点から
特に注目スルことをあげ、次のとおりとなる。
① 書院は、明治十ニ年建築セド、建築後ニ年余リナラガ、意匠ヲ見
יש、地盤ヲ構造ヲ注意ヲヲ錯スヲ建設セタため、全倒セリ。
② 明治ニ年ニ建築セタ皆ヲ建物ヲは、壁ヲ少なく、筋梁ヲ(大打
梁)ヲナカタタルため倒壊セリ。
③ 一方、半倒ノ西ノ庫ノ、石垣ヲ堅牢セタため倒壊ヲ防矣。
④ 屋根ヲ破壊ヨリ修築ヲ加ヘ、意匠ヲ加ヘニ、地盤ヲ注意ヲヲ
付スヲ裏門ノ、石垣ヲ堅牢セタため健橋、被害ナタガッタ。

5. 濃尾地震後の復興

濃尾地震ノ被害ヲ除クシ、『記録帳』ニンハ新築ヲ関スル次ニ記述ガ
ある[箇条2]。
「 新築セシモノ/附彩家

Photo2 Historical Material No.1. “Record Book” 1892, Hayakawa Family Collection
史料！拡録録！明治25年 早川家所蔵

（略）}

本宅 旧本宅ヲニニニ

宅上ヲ、人ノヲヲヲヲヲ

西ハテ書院ヲ新江ヲハシノヲ

手斧帯 明治廿年三月ニ十五日

枡立 明治廿五年十一月ニ十四日

桜上式 明治廿年十二月ニ三十日

手斧帯ニ新江ヲ前ヲ

大震災ニ建設ヲ付、松ノ集ニカヲヲ用ヒ、地盤ヲ堅牢、切柯ノ
ノ注意ヲ第一ニシ、建築ニ二ヲ付セリ。/大工名古屋伊藤

市郎武、尾、三、濃、/勢、京ニノノモサカ有人、日程ノ尾野/梅吉

始十六人、百姓ノ雇ノり方ニ/帳長ノ下ノ大博ノ田ニテノ数々ニハウ/

以テ数ヲ敺。

地盤 現今ニ地上ヨリニンニ寸ヲ下ケノ水ニ至リ。木ヲ可、

長ウヲ在ヲノ/生松、末ヲ付、十数ニ至ハ木ヲハ、/大工

オメテ書院ヲセメニ五十陳、/安江ハ河口ノ前ノ河ノ/木ノ

川ヲ上ヲ/八幡ハ河口ノ沙ヲ持ト付セ、/コクノ/リクニ

テテ役ヲ下ニ経テ、数ニ/四、松ノ四百ニ余、安江ニ有ノ

ヲ付テ付ヲ付ヲ。概

数石 土台ヲ下ニ付ヲ役ヲニ二テ数ニ、/三河ノ河ヲ持ト

付、石ニ/入ニ/入ニ石ノ、今ニ石ノ塔ヲ小ニ/懸ヲノ/松ヲ

材ノ/土台ヲ築ヲ付、/切柯ノ堅牢ニ

木ノ/土台ヲ築ヲ付、/切柯ノ堅牢ニ

名古屋ヲ/出ヲテヨリ送リ、/大柬、尾ノ/入ヲカノハ/

付ハ、大入ハ前ノ工ヲ入ヲ付、/外ノ物ヲ

材ヲ/古ノテハ付、/根ノテハ付、/大工ノ/松ヲ

ノ/入ヲ付、/大工ノ/松ヲ

材ヲ/外ノ工ヲ付、/外ノ物ヲ

材ヲ/土台ヲ築ヲ付、/切柯ノ堅牢ニ

名古屋ヲ/出ヲテヨリ送リ、/大柬、尾ノ/入ヲカノハ/
<table>
<thead>
<tr>
<th>年号</th>
<th>事件</th>
<th>件名</th>
<th>件名</th>
<th>件名</th>
<th>件名</th>
<th>件名</th>
<th>件名</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 1893</td>
<td>聖劔</td>
<td>復興</td>
<td>多重</td>
<td>館</td>
<td>館</td>
<td>聖劔</td>
<td>館</td>
</tr>
<tr>
<td>27 1894</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>館</td>
</tr>
<tr>
<td>28 1895</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>館</td>
</tr>
<tr>
<td>29 1896</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>館</td>
</tr>
<tr>
<td>30 1897</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>館</td>
</tr>
</tbody>
</table>

Photo3 Two Munafuda (wooden tags commemorating the foundation of the residence) December 30th, 1892

5-2. 建設関係者
史料I記録帳および陳覧の記録から、主屋、庭、湯殿付近、御室等の工事関係者の職種と人名をまとめることが次のとおりとなる。

住宅

<table>
<thead>
<tr>
<th>年号</th>
<th>件名</th>
<th>件名</th>
<th>件名</th>
<th>件名</th>
<th>件名</th>
<th>件名</th>
<th>件名</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 1893</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>館</td>
</tr>
<tr>
<td>27 1894</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>館</td>
</tr>
<tr>
<td>28 1895</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>館</td>
</tr>
<tr>
<td>29 1896</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>館</td>
</tr>
<tr>
<td>30 1897</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>聖劔</td>
<td>館</td>
<td>館</td>
<td>館</td>
</tr>
</tbody>
</table>

Photo3 Two Munafuda (wooden tags commemorating the foundation of the residence) December 30th, 1892

5-2. 建設関係者
史料I記録帳および陳覧の記録から、主屋、庭、湯殿付近、御室等の工事関係者の職種と人名をまとめると、次のとおりとなる。

住宅
水害を防ぐため、旧本宅の地盤より2尺5寸(758mm)かさ上げした。明治29年の川の氾濫では床上30センチまでの浸水あったことも『記録帳』に記されており、この地盤では、いかに水害に対する備えを入念に行わなければならないかがわかる。

地盤は、現状を8尺2424mmほど掘り下げると地下水位に達した。そこに井戸を40掘り、1穴につき末口5寸(152mm)，長さ1丈(3030mm)位の生松10本を9本を打ち立てた。地下水位より下に松杭を打ったのは、腐朽のおそらくないためである。その上にセメント50樽と安江河口河原の砕、木曽川上流八神向河原の砂を持ち寄せて作ったコンクリートを打ち、役柱下を築き上げた。ここにいう役柱とは一般的な部材名称ではないが、この役柱下に基礎杭を打っており、その数が40か所と記されている。試みに部屋間の柱を数えると、40か所前後となる。したがって、主屋全体が同じ沈下しないように、部屋間など荷重を受ける場所に用いた柱のことを考えられる。以上の基礎工事を、明治25年4月の旧主屋の取り壊しから、同年7月の地盤かさ上げまでの3ヶ月で行っている。そして土台下および役柱下帯の敷石には、三河石を特に取り寄せて用いた。

座敷および裏座敷廻りの柱に内賞水を通すことによって、細い柱が弱くなるのを防い、棟梁伊藤市郎治の好みで、鉄丸ボルトを通じて緊結するよう注意した。

「地震梁」とよばれる丸太を天井上に十文字に組んだ(写真4)。
小屋組は普通とは異なるため、一度煙で仮組を行ったうえで本建前を行った(写真5)。
また、史料1『記録帳』のほかに、史料38主屋・築造平面図(写真6)にも、主屋再建に関する注意点として、次のとおり具体的に記されている。

右側の記述

地元の地震梁

写真6 Historical Material no. 27, The Floor Plan of the Main Building, Hayakawa Family Collection
史料38 主屋平面図 早川家所蔵

写真5 Historical Material no. 72, Old Picture, Temporary assembly of the Roof Frame, Hayakawa Family Collection
史料84 古写真 小屋組の仮組

写真7 A Roofing Board attached diagonally
斜めに張られた野地板
6. 先駆的耐震建築としての特質

幕末・明治初期以降、わが国の建築学が近代化していく中で、木造伝統構法としての変化・工夫が加えられた。とりわけ濃尾地震（明治24年）以降の地震の震災被害に対して、学徒建築家を中心に耐震化が進められた結果、わが国の伝統構法の弱点の指摘と、その欠点を克服するための改良案が考案された。すなわち、濃尾地震の発明25年6月に設置された防災防護調査会が、明治27年12月の豊川地方地震の復興民家構造の指針として「木造耐震家屋構造要領」を発表した。さらにそれより早く明治25～26年に、ジョセフ・コンドルや伊藤為治が『建築雑誌』に発表した論文等においても、従来の日本家屋構造の欠陥として、建築重量の過大なること、柱が孤立していること、柱柱等長短仕日の微細な位置の欠如が多いこと、脊桁を必ずしも一定であることは作業を始め、筋道や台所の設置の必要性、木造各部の固定金物の考案その後の使用方法などを述べている。

このような濃尾地震後の建築学界の状況において、早川周造が濃尾地震の直後に被災を独自に分析し、復興に際しては、遅くとも上様式が行われた明治25年12月30日に大工棟梁や技師に相談しながら、前調に指摘した耐震性を考慮した松木とコンクリートを用いた地盤の構法や、筋道、火災防止、「地地震」、野地板の斜め張り、ボルトの使用などの木造軸組法を採用した先駆性は、とりわけ注目に値する。

7. 結

ⅰ 早川家住宅は、濃尾地震で甚大な被害を受けたが、それを教訓として、地盤や構造について耐震性に新たな工夫が凝らされたことが、文献史料と現存建造物として的確に確認できる。耐震性を考慮した木造軸組法の近代化の先駆の事例として注目される。

ⅱ 豊富な文献史料により、複数の茶屋を含めた建築関係者の全容が、広く確認できる。

ⅲ 今後は、本稿で紹介した重要性の高い文献史料を一冊、面積調査の基礎、茶屋などの書籍著者、現存史料による室内意匠調査の基礎を考察する予定であるが、早川家住宅は、いま建築家宅の版本が確立する以前に、地方図版の案内家であり、文化人かつ近代数寄者である当主が、自宅建築にどのようにかかわり方をしたかを、実証的に解明できる貴重な例といえる。

謝辞

本研究を進めのあたり、早川家および津市教育委員会から実調調査および史料調査、撮影等にご協力を賜りました。ここに深く謝意を表します。

参考文献

1) Ojima, Yoshihisa; Sunami, Kunitsune; Shida, Tadao; and Tachikeda, Tetsuji: Report on Comprehensive research of Japanese-style modern Architecture in Gifu Prefecture, Educational Committee of Gifu Prefecture, 2016.3 (in Japanese)

4) Tatsuhara Nakashima: Lord of Parliament, Shozo Hayakawa, an extraordinary intellectual from Seinou, Arena, No.11, Chubu University, pp.349–356, 2011.4

6) Tanemichi Ito: Methods on the structural improvement of Japan’s architecture, Kyounikai Shousha, 1981.12 (in Japanese)

8) 伊藤為吉演説、市東肇演講：地風に関する工法片々、建築雑誌、第73号、1983.1
Hayakawa residence is a rural mansion, which is a preeminent modern Japanese-style house in Gifu prefecture. Most heads of rural mansions had interaction with entrepreneur and major merchants. They were highly sophisticated, intellectual and also tea ceremony masters. Furthermore, before architects gained its profession, the heads of the family, which had deep insight and intuition for architecture mainly planned and designed the residences, rather than the carpenters. There are many historical materials preserved at Hayakawa residence. In detail, they describe the role of the head, when constructing residences. Also, many buildings of Hayakawa residence were severely damaged by the Nobi Earthquake that took place in 1981 and was reconstructed immediately after the Earthquake.

The following details of the seismic countermeasure taken place whilst the reconstruction can be identified:
1) The ground water level is 2.4m below the current ground level. 40 holes were dug at ground water level. In each hole, 9 to 10 pine pillars were placed for the foundation. The pillars' diameter is 15cm and is about 3m long.
2) Concerned of the thin pillars at the formal Japanese room weakened by the penetrating tie beam, the master carpenter's suggested binding the pillars and the penetrating tie beam with round iron bolts.
3) A round timber called "Jishinbani" was put together in a cross above the ceiling as a brace.
4) Besides "Tokobashira" pillars' sizes are all over 15cm squared.
5) A specific joint is used at the foundation, where it cannot be seen from the outside, to prevent it from sliding.
6) The main Carpenter gave and advice on whether the number of braces is enough or not.
7) Penetrating tie beams are all plugged to the pillars.
8) The pivot used at pillars alternatively reaches to the base.
9) The beams were not patched, using one timber.
10) In addition to the seismic countermeasures that can be verified by the historical materials, which are listed above, it can be seen in the remaining buildings that an angle beam is inserted at the corner of the girder and the roof boards are attached diagonally.

Since Last of Edo and Meiji Era, along with the modernization of architecture in our country, traditional timber construction has also changed and innovated in modernization. Especially from the repeated seismic disaster after the Nobi Earthquake in 1891, seismic countermeasures have evolved through architects with the degree. They pointed out the weakness of the traditional construction and devised a resolution plan. As one of the first examples, "A Document on seismic countermeasure of timber structure residences" was published by the Investigation Committee for earthquake disaster prevention, which was established in June 1892, after a year from Nobi Earthquake, to use it as a guideline at Yamagata Prefecture, Sakata area’s reconstruction residence’s structure. In addition, Tamekichi Ito insisted the necessity of braces and foundation, as well as devising fixed hardware and showed an example of how to use them in the thesis he publicized at "Journal of Architecture and Building Science". He devised that there are four defects in the traditional wooden frame construction:
1) The weight of the roof is too heavy. 2. The pillars are isolated. 3. The structures are being cut for joints and elongating. 4. The binding done by penetrating tie beam and wedges are only temporary.

Under these circumstances after Nobi Earthquake, Shuzo Hayakawa analyzed the seismic damage by himself, and when at reconstruction, he introduced construction method of foundation and wooden frame structure as a countermeasure for the earthquake. His pioneering acts are admirable.