ピエル・ルイジ・ネルヴィの飛行機格納庫群の設計過程
PIER LUIGI NERVI’S DESIGN PROCESS OF HANGARS

Satoru KIMURA and Takahiro TAJI

This paper’s objectives are to report the construction process of hangars in Orvieto and Orbetello by the construction company of Nervi and Bartoli, and to analyze the formation process of Nervi’s design philosophy through a model experiment of both hangars. Although at first Nervi attempts to design a hangar with pin joints, he finally selects rigid joints of reinforced concrete in his hangar constructions. It indicates that although Nervi is initially uncertain of the structural safety of a vault roof with rigid joints, he eventually understands its structural safety through the experiment.

Keywords: Pier Luigi Nervi, Hangar, Reinforced Concrete, Model Experiment, Rib Vault of Diagonal Grid

I 序
I-1 研究の背景
19 世紀から鉄骨が、20 世紀には鉄筋コンクリートという新しい素材がイタリアでも建築の分野に導入された。その過程の中でピエル・ルイジ・ネルヴィ（Pier Luigi Nervi, 1891-1979）は RC 造の構造的な造形表現の可能性の発展に貢献したとされている [1,2]。本研究は造形表現の側面だけではなく、イタリアにおける構造力学の発展との関係、また RC の建築技術の発展という潮流の中にネルヴィの建築活動の位置付けを試みる。その一環として今回は 1932 年に設立されたネルヴィ&バートローリ建設会社（Società per costruzioni Ing. Nervi e Bartori, 以下 N&B）による戦間期から戦後にかけて行われた飛行機格納庫群の建築活動を取り上げる [3,4]。また格納庫以外の戦間期の主な業績で注目すべきものには、尖頭アーチを平行に並べたヴォールト屋根の塩倉や [5,6]、金属メッシュで成形した形態に似たコンクリートで構成された 1932 年にフィレンツェのサントマリア・デ・フィオーレのドームの耐震性に寄与した [7,8]。この成績は後世のネルヴィの設計にどのように活かされるのであろうか。

ネルヴィの飛行機格納庫の代表作にはイタリア空軍主催の設計競技で設計施工をする権利を勝ち取ったオルヴィエート（Orvieto, 1938）とオルベットロ（Orbetello, 1941）に建設されたものが存在する。この実施に至る過程で年代が特定できる計画案の中には、1930 年代初頭に設計された計画案 [9,10]、1932 年に受理された格納庫の可動性の特許 [11,12]、1933 年に行われたシェアリング・リカンネーラに出席された 2 案の計画案、イタリア空軍小隊案、1935 年に設計競技が行われたチャンピーノ空港のための案がある。ネルヴィはチャンピーノ空港のための案を完成した。
ある格納庫の設計時に導入された模型実験とプレキャスト工法などの建設技術について、各種根拠となる資料を示しながら論じている。一方、後者は格納庫が建設される時代背景を取り上げている。

1930年代後半の自給自足政策により、鉄筋と型枠用木材の使用が制限された状況で建てられたオペレッロとオペレッロの格納庫の実施案の設計における変更が詳細に論じられている。さらに、ネリはネリが行った模型実験の詳細な調査を行った[[11] [12]]。本稿で取り扱ったオペレッロの格納庫も模型実験が導入されており、ネリはモデルの研究所で行った模型実験について触れている。しかし、実験後の設計案の変化については詳しく言及していない。

また、オルヴィエットとオペレッロの格納庫については、P・パッチェティとP・パッチェッリの個別研究もある。それらは建築史の歴史的背景を示しているが、実施案に至る設計過程については記載されていない。パッチェッリは、オルヴィエットの実施案の詳細図やアクセソントを示したが、分析は実施案のみに限定されている[[13] [14]]

そこで、パッチェッリはオペレッロの格納庫の設計背景として、同時期のイタリアで完成したシール構造の建築物に触れ、ネリの姿を含むイタリアの格納庫群について分析している[[15] [16]]。

これまでの既観研究では、おそらくオルヴィエットとオペレッロの格納庫の実施案や、その際に導入された新しい建築方法に注目が集まり、設計過程については研究は行われていない。本稿はそれらの構造形式の変更を詳細に分析する研究と位置付けることができる。

1-4 研究の方法と範囲

本稿はネリ設計のオペレッロの実施案に至るまでの計画案を分析し、考察の時代背景に重視し合わせることで、選択された構造形式と屋根の架構形式に至る経緯を解明するという方法を採る。

第2章から第4章では、未実施の格納庫の計画案を含んだ作品の分析を行う。計画案の設計変更の過程を、原図面やオペレッロの既往研究に掲載された図面を参照しながら明らかにする。原図面はアカルハイコレ収集資料(Centro Studi e Archivio della Comunicazione, 以下CSAO)や[[17] [18]]、ローマにある国立アーカイブセンター(Archivio Centrale dello Stato di Roma, 以下ACSR)の所蔵物を使用した[[19] [20]]。図面分析では平面、断面、そして断面構成に触れ、ネリが検討した構造形式を抽出し、各計画案との比較を行う。

第5章では、前章までの分析を踏まえて、構造形式の変更理由について考察を行う。さらに飛行機格納庫の構造形式や接合形式の変更から読み取ることができる、ネリの設計理念の明解を試みる。

2 片持ち梁形式による飛行機格納庫案

ネリによると初期の格納庫設計への関与は1930年頃で、その案は円形平面で片持ち梁が用いられている[[21] [22]]。その形式のものは上記の案と1932年に屋根部材をRC造からS造に変更したもの、同年に可動部の特許として申請書の中に記載したものと1933年のミラノ・トリエンナリーレに出展した2案で合計5案ある。

2-1 鉄筋コンクリート製円形格納庫案

1930年の鉄筋コンクリート製円形格納庫案は作品集に収録されており[[23] [24]]、自主提案として設計されたものである(Fig.1)。格納庫の平面形式は円形で、半径の内法直径は5.4mである。その内径は倉庫部分が7.0m、V字柱と地面との接地幅として2.5m、そして、格納庫スベースが25.9mとなっている。14本のV柱が屋根を支え、それぞれが柱頭部分で整えられ円環を構成している。格納庫中央の空間の高さは約5m。格納庫全体の最大高さは10.3mである。

屋根を構成する梁は円形平面の中心から放射状に伸びており、V字柱の外周の柱頭部でS本に枝分かれしている。それぞれの梁の先端の一部には上辺が短い円形の18本の柱が建てられ、その間に斜梁壁が挿入され、外壁が構成されている。それ以外の部分は幅約47.0mの飛行機の出口部が2ヶ所設けられており、出入口には金属製のスライディング・ドアが設置されている。

断面図(Fig.1)を見ると、右側に小型と中型の飛行機が1機ずつ、右側には大型1機の収容が想定されていた。床は可動床とされ、出入口へと飛行機を容易に移動させることができる。そして、V字柱の頂部、屋根を構成する片持ち梁が3方向に枝分かれする終点と、さらに出入口上部の梁の先端がつながりで円環状に結合され、一体的な構造体が検討されていることがわかる。

2-2 鉄筋円形格納庫案

2つの計画案の鉄筋円形格納庫案は[[25] [26]]、RC案と同様にネリが自主提案である(Fig.2)。格納庫の平面形状はRC案と同様に円形であるが、寸法の記載がないため正確な値は不明である。そこで、RC案と同等な長さ(54.5m)と想定すると、中央の円柱の構造体の半径が小さくなっているので、飛行機の格納スペースが拡大していることとなる。

RC案では小型飛行機は2機しか入れなかったが、今回は3機収納できるようになり、余裕を持って大型の飛行機を収納できるようになった。それは屋根を支える円柱の構造梁が半径3m程度に縮小することにより実現している。

屋根を構成する部材が今後は鉄筋を計画され、上下で2段の32本の片持ち梁が放射状に配置されている。それに直行して、つながり梁が3.5m程度の間隔で配置され、合計8列の円環が構成されている。

片持ち梁の先端には、外壁の可動荷を支える円形のリング(枠枠)と接続するために、それにのじる金属製のトラスが組まられている。また外周壁全面に可動荷が設けられ、その位置からでも飛行機の出入りが可能なため、可動荷は不要になっている。

断面図に記載があるS造の片持ちのトラス梁を見る(Fig.2)。外周側に向かって上方に傾いている。トラス梁の構成としては2段の片持ち梁と枠枠により箱形が形成され、片持ちのトラス梁全体を引き上げる方向に斜梁が設けられている。また、同心円上のつながり梁によって、それぞれの鉄筋のトラス梁が組立てられ、梁の先端を引き上げる効果が想定されている。先述べのRC案とこの案ともに片持ち梁を円環状に掛け、片持ち梁の先端が垂下するのを防ぐ対策が検討されている。前述のベルニ・スタジアムでは片持ち梁を一列に並べ、各片持ち梁をつながりで連結する方法が取られたが、この格納庫ではつながり梁で円環につないで一体的な屋根が目標にされている。

Fig.1 Section and plan of a circular hangar in RC
Fig.2 Section and plan of a circular hangar in steel

— 684 —
2-3 鉄筋コンクリート・シェル構造格納庫案（特許案）（1932）
ネルヴィは格納庫の回転床に関する特許を申請し、1932年1月8日に受理されている。特許名は「飛行機と乗り物のための回転輪状台をとる円形格納庫」（Fig.3）であり[227], 資料はACSRで入手した[228]。これも平面形状は円形であるが、8造円形格納庫案と同様に寸法は記載されておらず、正確な数値は不明である。仮に飛行機の寸法をRC造の計画案に記載されているのと同様（幅60m/奥行き20m）と想定すると、格納庫の大きさは直径62m程度となる。
中央の倉庫空間は半径5m程度で、この格納庫の構成的コアを構成する6本の柱はそれぞれ1米角程度である。柱頭がつながり梁で繋がれ、そこから26ms程度弦出出したシェル（片持ちスラブ）が格納空間を覆っている。スラブの先端の一部は外周部の固定の梁と接続され、出入り口が1箇所配置されている。そのため可動床が計画されており、収納された飛行機は回転して格納庫の内部に移動できる。
この回転床の特許の申請書には[229], まず飛行機格納庫の設計に際する問題点として「出入口の大きさによって、機体の出し入れが不可能になること」が挙げられ、その点に対して、「円形や円に近く多角形の平面形状」、「円の周辺に支柱を不必要にする中央の構造体」、「回転する床」という、3つの解決方法が提示されている。

Fig.3 Section and Plan of a hangar in RC shell (Patent)(1932)

2-4 ミラノ・トリエンナーレ出展案（1933）
次に計画を発表した年代が特定できるのは、1933年に開催された第5回ミラノ・トリエンナーレに出展案である。同展示カタログをみると、ネルヴィはローマで活動していた建築家チェスレ・ヴァッレ（Cesare Valle,1902-2000）と共に2つの飛行機格納庫の案を出展していたことがわかる[230]。
1つは観光事業用の民間用格納庫（Fig.4）であり、もう1つは3つの小隊用の軍用格納庫（Fig.8）である[231]。展示会に展示されたパネル以外で計画案を把握できる資料には、イタリアの建築雑誌「アルキテクトゥラ」（Architettura）の特集号がある[232]。
2-4-1 観光事業用の民間用飛行機格納庫
この施設は半円形の格納庫と矩形の事務所棟からなる（Fig.6）。また『アルキテクトゥラ』内の平面図に寸法は記載されていない。しかし、内観パース（Fig.7）をみると飛行機が1機記載されており、RC造飛行機格納庫案（1930）と同程度の大きさであると考えられる。
また、事務所と平行方向の断面図（Fig.5）をみると、中央にRC造のV字柱が2本あり、その柱から外壁側に片持ち梁が伸び、外壁面は耐風を負う必要なくカーテンウォールとされている。最外周部に円環状のつなぎ梁があり、スライディング・ドアのハンガーレールの役割も担っている。事務所棚と平行方向の断面図をみると、同様に格納スペースはV字柱で支えられた片持ち梁で覆われ、そのV字柱は格納空間と通路の間にも計画されている。

Fig.8 Square plan

Fig.9 Perspective of the Warehouse

Fig.10 Section of square plan of a military hangar for 3 platoons

3 トランス梁やアーチの並行配置形式への移行
これまでは異なる平面形状が検討されたイタリア空軍小隊の格納庫の設計競技が不明である。ネルヴィは1933年のミラノ・トリエンナーレに出展した3つの小隊のための軍用空港格納庫案（RC造正方形案）にて、片持ち梁形式での設計の限界に達している。それを打開するべく、ネルヴィは同様小隊の格納庫でアーチを用いた屋根の検討を行なっている。一方サルジェレオ（Ciammino）空港のための格納庫は、1935年に設計競技があり計画案を応募している[227]。
3-1 イタリア空軍小隊のための格納庫案

この計画案は実施には至っていないため、残っている図面はおもにスケッチが多く、それらは CSAC に所蔵されている[23,24]。計画された時期は不明であるが図面番号を見ると「1445」とあり、次節のチャンピーノ空港のための格納庫案の図面番号が「1407」であるため、この同型小隊案をより早く計画された可能性がある[24,25]。

格納庫を含んだこの建物全体(Fig.11)は浅いヴォールトを RC 造の2層で2棟ある建物の間に掛け置きで構成されている(Fig.15)。全体の大きさは36m×54mであり、格納庫の大きさは36m×40mとなる。その最高高さ約16mで、アーチのライズは約7mである。格納スベースの両側には7m×36mの事務所等が計画され、それにより、屋根の両端に設わるスラストに対応している。出入口は長辺の片側である。屋根を構成する RC 造の10本のアーチの間隔は3.6mであり、それぞれの間はレンガが充填されている[23,24]。

屋根の頂部には RC 造のハングが計画されており、屋根の両端部も同様であり3 ヒンジ・アーチの平行配置によるヴォールト屋根が計画されていることがわかる。また、アーチの間にかけられたレンガ造のスラストは斜めに張られ(Fig.14)、屋根の中央から左側はアークのせいの上端に張られ、右側ではアークのせいの下端に張られている(Fig.15)、中央のアーチ間でも(Fig.12,13)、屋根の厚さを上下交流にして置かれている[23,24]。こうすることで鉄筋のフランジ効果のようなもので、この RC とレンガによる格納庫の屋根で想定されており、面としての屋根強度を高めようとしたと考えられる。

以上のようにイタリア空軍小隊のための格納庫案から片持ち梁形の屋根からアーチを用いた屋根形式への転換が見られる。それによりスラスト処理の必要性が生じるが、アーチの両側に事務所などを配置して対応している。この計画案のアーチには前部と端部にヒンジが設けられ、3 ヒンジアーチが試みられている。またそのアーチを複数平行に並べて、その間にレンガを張りヴォールトを構成するという当時の一般的な屋根構造が採用された。しかしレンガを斜めに張るという点はオルファイエトやオルベッソの格納庫の斜格子リブヴォールトへとつながる着想が結びつけることができるだろう。

3-2 チャンピーノ空港のための格納庫案

この計画は1935年に行われたチャンピーノ空港のための格納庫の設計競技用に計画されたが、一等には選ばれず実施事実である。この計画案の各図面やスケッチは CSAC に所蔵されている[22,23]。

同計画に関連した現存する図面の時系列を特定することは難しく、本稿では設計競技のために作成された計画案と、A 案および D 案の4つに分類し、A 案から D 案の順番に計画が進行したという仮説を立てる[22,23]。その根拠として、ネルヴァは1965年にハーバード大学で行った講義で、格納庫の屋根形式を「従来の計画によって数種の解法」から「ヴォールト形式の一体的な構造体を考えを変えた」という発言を残している[22,23]。フランスがアーチを平行に複数並べて新造の計画の案を A 案から C 案臭し、より一体的な構造体となっている斜格子ヴォールトの計画を D 案とする。

3-2-1 A 案

A 案は平面の長手方向に平行して1本のボックス梁がかけられ、それぞれに対してトラス梁を13本かけて屋根が構成されている(Fig.16)。格納庫の全体の大きさは36m×80mであり、飛行機の出入口は80mの片側の1箇所だけである。長辺方向に80mのボックス梁(大桁)が出入口側から約10m離れた位置に配置され、その大桁の中央に1本の柱が設けてある。36mの方向には13本のトラス梁が出入口の反対側にある柱から大桁に直線して架けられ、出入口側の上部には庇が取り付けられている。その出入口側の下の部分にはスライドング・ドアがあら。屋根を構成するトラス梁と、それを支える入口と反対側にある柱は鋼接合であり、1本の大桁と13本のL 字の柱梁や大桁の中央の1本の柱の支えて支える構造体の検討がなされている。

ここからは A 案の最終形態(17)に至る大小の柱と梁のネルヴァの検討をスケッチから辿ってみる。まず梁の検討についてだが、最初は梁せんが小さい(Fig.18)。しかしトラスの範囲が増加し(Fig.19)、張り出した柱の先端から反対側の支柱まで、トラス梁で構成されているのがわかる(Fig.20)。また、出入口側に配置されている柱の検討は最初には2本で設計されていたが、最終的には1本に変更されている(18,20)。さらに、ボックス梁が2本(Fig.18,1本(Fig.20),そして大桁がない場合も検討されている(Fig.19)。これらの検討を通じて、ボックス梁に小梁を1本かからの形式(Fig.17)が完成している。

3-2-2 B 案

B 案では A 案と同じ大きさの屋根を(Fig.21)に凸の弾張弦を平行に13本並べ、長辺方向に伸びる3本の桁材と束材、そして短辺方向の RC のタイバーの部分で構成している(Fig.22)。梁形状の検討過程で格納庫の内部に1本の柱を撤去する方法が検討されている(Fig.23-25)。スケッチを見るとトラスをアーチ形状に変更し(Fig.23)、屋根を構成するアーチを両側の地上までつなげている。
(Fig.24). さらに翼間の支柱を両端に寄せ、屋根を構成するアーチの上側にアーチをより上げる逆縫を設ける検討を行っている(Fig.25)。

最終的には短辺方向の両側の柱をつなぐパイプを設け、その上部にアーチ形状の柱を設けて、36m のスパン間に柱を設けない無柱空間の案に迫り着いている(Fig.21,22). A 案の場合は 80m の大柱が長手方向に 1 本だけだったが、B 案では 3 本となる。A 案と比べて屋根形状が最終案のアーチ形状に近くなり、柱が格納空間に無い点から判断して、改良が達成されている。

![Fig.21 Plan(TypeB)](image1)

![Fig.22 Section for Ciampino(TypeB)](image2)

![Fig.23 Sketch(4)](image3)

![Fig.24 Sketch(5)](image4)

![Fig.25 Sketch(6)](image5)

3-2-3 C 案

C 案も同設計競技のために計画された案で、B 案のようなタイプバーと 3 本の柱がなくなり、両端と頂辺にジグを設けた 3 本ジグ・アーチを平行に並べた。平面の大きさが 44.8m × 80m である屋根を構成している(Fig.26). この案に至る検討の中で、ネリヴィは両側の柱を平面に垂直ではなく傾けることを検討し、無柱空間を 44.8m に広げている。また全面の断面図(Fig.27)を見て、屋根と柱の接合部である逆 V 字柱の両端部と、屋根の頂部はビン接合が想定されている(Fig.27). さらに屋根を構成する半分のアーチに対し、6 本のつなぎ梁が配され、21 本のアーチが一体になるよう検討されている。

![Fig.26 Plan(TypeC)](image6)

![Fig.27 Section for Ciampino(TypeC)](image7)

3-2-4 D 案

D 案は前設計競技の最終案として提出されたものと考えられ、平面上形状は C 案と同様であるが、斜格子リブ・ヴォールトが採用されている(Fig.28). 屋根と支柱の両端の接合はジグである(Fig.29).

ネリヴィは D 案に至る過程で、屋根の桁を天井状で検討を行っている(Fig.30). そのスタディでは 3 本の柱の間に 2 つのアーチをかける案の検討を含む。ネリヴィの設計の検討において、中央柱の柱よりも左側を見ると、短辺方向に平行にかけた柱に対して、さらに細かい斜めのリブが検討されている。リブに囲まれた三角形やひし形が読み取れる。中央の柱よりも左側では、長辺方向に等間隔に梁が配られているのがわかる。それの中には 10 等分された長方形の内側に対角線が引かれた部分や、放射線が描かれていても、さらには 10 等分された内の一つをさらに 8 等分した検討もある。

このように、交互のリブの検討(Fig.30)を経て、斜格リブ・ヴォールトの屋根が完成している(Fig.29). さらに、屋根と柱の接合部を観ると、ジグが検討されていることがわかる。そのジグの配筋方法が接合部の詳細図(Fig.31)として示され、屋根全体の形状を接合部で吸収するために、アスファルトの挿入が計画されている(23)。
5 考察（斜格子リブガレットの設計に至った理由）

前章までの格納屋の構造形式の分析により、ネルヴィが2段階の構造形式の転換を行ったことがわかる（Fig.38）。第1段階は片持ち梁形式による屋根構成から、アーチやトラス梁を平行に複数並べて屋根面を構成する方法への転換である。第2段階はアーチを平行に並べるのではなく、45度の対角線上の位置に複数並べ、さらに各アーチを斜めに交差させた網目状の構造体への移行であった。

5-1 斜格子リブガレットの手がかり（設計変更の理由）

斜格子リブガレットの設計に至る過程の中で重要なのは、一連の片持ち梁形式案とイタリア空軍小隊の案や、チャンピーノ空港C案とD案の間で生じた大きな転換であろう。

ネルヴィは第3章1節で示した通り、アーチを平行に複数並べ、その間にレンガを張り屋根面を構成する方法へと架構形式を変更している。3.6mの間隔で10本のアーチがかけられたそれぞれの間に、穴あきレンガを斜めに張り、一体的な屋根面を構成する方法が検討されている。穴あきレンガを張って屋根を構成する方法は、ダヌッソが1911年に取得した特許のもので、建築方法としては当時一般的だったが、斜めに張るのはネルヴィ独自の方法であると思われる。一方、直線上にレンガを張らず、斜めに張る方法はイタリアの伝統的建築物にも散見される。ネルヴィが直接そうした伝統的工法に触れたのは、フィリッポ・ブレネスキ（Filippo Brunelleschi, 1377-1446）が工事を担当したサンタ・マリア・デル・フィオーレ大聖堂（Cattedrale di Santa Maria del Fiore, Firenze）のドームに用いらされたドーム構造である。ネルヴィは1934年に行ったドーム調査でレンガを斜めに積んだ実例から学び、イタリア空軍小隊の格納屋の設計に際して検討している。

さらに、チャンピーノ空港のC案からD案に至る設計過程で、ネルヴィは天井面のリブの個数について、斜め方向にリブを架けるステップを残している。大堂を長辺方向と短辺方向のどちらにかけるのかを検討する設計過程で斜めのリブを発想し、最終的にはアーチ形状のリブを用いた斜格子の天井に至ったのである。

5-2 理論家ダヌッソとネルヴィの出会い（設計理論について）

ネルヴィは斜格子リブガレットを着想したが、その構造体の複雑さを自覚しており、実際の建築に踏み切ることができないでいた。1934年に行ったドーム調査でダヌッソと出会い、ネルヴィが設計したアーチ・リブを構成されたオルヴィエトの格納屋の複雑な構造体について、議論する機会を得ていた。ダヌッソは斜格子を用いた新しい構造を研究しており、不静定構造物の構造体の安全性を裏付ける2つの革新的な証明を公表している。それらが斜格子リブガレット屋根の建造への進出に繋がったのである。

ネルヴィはオルヴィエトの格納屋の構造解析に関する苦労を1965年の講義の中で述べていた。そうした困難を解決に導いたのは、ひずみ計測器を縮小模型に用いた構造実験をいち早く導入したいラ・ノボ合成技術研究所のダヌッソであった。ダヌッソは1934年に「自己応力理論の手がかり」と実際的応用」という論文を書いていたのである。その中で注目すべき内容は1910年に竣工したエスビック社とドイツ人建築家路氏を巻き込み議論を生んだローマのリソリジ
6 結

結論としてネルヴィ、片持ち梁を用いた屋根の形成からアーチやトラス梁を平行に並べる検討を経て、各アーチを交差させて、網目状のネットワークを持つ構造体である桁格子リブヴォールトに進化

した。またネルヴィの屋根と支柱の接合部はビン接合で検討されていなかったが、建物の耐震性を考慮して設計に利用するようになった。つまり、RC 造の桁格子ヴォルトの各接合部を剛接合することで、一体的な荷重を構成できるように模型実験を経て確信したのである。

謝辞
資料収集ではパルマ研究センター兼資料館（CSAC）の Lucia Miodini 氏と Paola Pagliari 氏にお世話になった。深く御礼申し上げる。

参考文献
注
注 1) 参考文献 3, pp.10-12. 既往研究の中でプレートは、建物に完成したローマ
のマリクア（Magliana）の倉庫や 1948 年に完成したトリノの展示場などを挙げ、RC 独自の形態表現や建設方法について賞賛している。 2) Olmo, Carlo and Chiorino, Cristian (ed.): PIER LUIGI NERVI Architecture come Storia, Silvana Editoria, pp.203-205, 2010. 3) Nervi 的活動の機関は施工会社の主体と兼ねてその居住地がローマであったことか
ら、N＆N 社と同様にローマであった。また、パルトロはネルヴィの
のことで、N＆N 社の社員でもあったためエンジニアだと思われる。参
考文献 3, pp.149-150 により、パルトロは主に工事管理や契約などの事
務的な仕事を担当している。施工会社の協力をパルトロに負わせつつ、
ネルヴィは技術開発に多くの時間をかけることができるようになった。 3) ネルヴィは 1930 年代のアーチ柱の建設の中で特記すべきものとして R.
マイヤール (Robert Maillart, 1872-1940) によるスイスのサルガロプラ
ール橋 (Salginatobel Bridge, Switzerland, 1930) を挙げている。この橋
は頂部と基部との接合部にビン接合を用いた 3 ビン・アーチ柱であった。ネル
ヴィはこの橋について以下の記事で述べていると、RC でのビン接合の
いた橋梁で、ローマのパルトロがフィレンツェのサンタ・マリア・デリ・
フィオーレのドームよりも大きなドームにマックス・ヴァルツ (Max Berg, 1870-
1947) が設計を行った、カーロ・フィドマン社が設計したヴォルトの 100 年記
念会館 (Centennial Hall, Wroclaw, 1913) がある。この橋を構成するのは
鋼梁である。また、以下の橋を含む多くの橋梁で使われている、平面を
として応力に抵抗する構造体とは言い難い。100 年記念会館は RC 造でアーチ
状のリブによるヴォルトを構成した最初期の事例である。 5) ドーム竣工後 500 年の 2 年前に 1436 年頃に調査委員会は組織され、
亀裂を中心にクーポラの底部から地下至るまでの内部の調査が行われた。 6) Nervi, P.L., Considerazioni sulle lesioni della Cupola di S. Maria del
PIER LUIGI NERVI’S DESIGN PROCESS OF HANGARS

*Satoru KIMURA*¹ and *Takahiro TAJI*²

¹ Doctoral Candidate, Graduate School of Engineering, Kyoto University, M.Eng.
² Assoc. Prof., Graduate School of Engineering, Kyoto University, Dr.Eng.

This research examines the first sketches and construction of aeroplane hangars of Orvieto and Orbetello by Pier Luigi Nervi, who designed and built these in 1938 and 1942. Consideration will be given to the reasons he selected the structure type and frame of the roof by comparing it with the historical background. Nervi changed his construction company’s partner to G. Bartori, an engineer. The company built a salt warehouse which has parallel arches and a cistern built by a concrete spray. Nervi took part in a survey of a dome of Santa Maria del Fiore in Florence in 1934. How did these experiences effect Nervi’s design of the hangars?

In Chapter Two to Four, his work, including plans for unexecuted hangars are analysed. The process of changing designs in hangar sketches is clarified by referring to the original drawings and those posted in the research of C. Greco. The structural form examined by Nervi is extracted through an analysis of the planning sketches, the roof, and the sectional configuration. Then, according to the comparison with each plan, this research seeks to interpret how the load flowed from the roof to the ground. Nervi’s design process of the hangar for Orvieto and Orbetello had three phases. First, a circular roof with cantilevers of reinforced concrete was formed on a circular plan. Second, a rectangular roof was composed of tress beams and arches arranged in parallel rows. Finally, a complex roof composed of a multiplexing network structure of RC beams on a rectangular plan was used.

In Chapter Five, based on the analysis from the previous chapter, the reason for changing the structural form of the aeroplane hangars is discussed. Nervi’s design philosophy, which can be read from the transition of the structural form and the join form, is also examined. There are three hypotheses as to the double network structure of Orvieto. One is a diagonally stretched brick, a sketch of diagonal ribs, and a reference to a structure as a surface that is not a shell. Additionally, Nervi was aware that the structure of Orvieto was designed in such a way that it could not be calculated. Therefore, Nervi discussed the structure with the theorist Arturo Danusso and confirmed the safety of the structure by model experiment tests. As a result, both the plan and the joints between the roof and the pillars of the hangar changed. The study of pin joints began from the Type-C hangar for Ciampino airport. The top of the arch and the joint between the roof and the pillar were pin joints. Even in a Type-D hangar that became a network vault, pin joints remained between the roof and the pillars. However, in the implementation plan of Orvieto and Orbetello, the joints at the top and between were all rigid.

In conclusion, Nervi arrived at a hyperstatic structure of the diagonal rib vault which consisted of crossing each arch in the design process of the hangar in three phases. Furthermore, the joint between the roof composed of them and the pillar is ultimately rigidly joined instead of pin junctions after sketching the relevant plans. Nervi’s design philosophy is to connect each member with a rigid joint, a solid monolithic structure, that is, to constitute a hyperstatic structure, which was seen in the design process of the aeroplane hangar.