都市化に伴う住民の意識・行動変化から見た
親水行動特性に関する研究

渡辺秀俊*, 畢柳昭雄**, 近藤健雄***
Hidetoshi WATANABE, Akio KUROYANAGI and Takeo KONDO

The objective of this study is to understand the background of water related activities, which we consider as a "Water-familiar Activities". Investigations by questionnaire method were conducted on how people evaluates their living environments and how frequently those people go recreation activities. The results of the research revealed that as the urbanization is going on, the less satisfaction to residential environments and the more disperse in the activities were observed. Furthermore, it is considered that the frequency of water related human activities increase not only by urbanization but also by the accessibility to waterfront area and the environments of there.

Keywords : urbanization, living-environment, water-familiar activity, perception, residents, space factor

都市化, 居住環境, 親水行動, 意識, 住民, 空間

1. はじめに
1980年代の後半から都市の臨海部を中心にウォーターフロント再開発が進行されており、現在も沿岸域や河川流域を対象に様々な整備・開発が行われつつある。そして、これら最近の整備構想においては、水環境の機能に対する考え方が、従来の海岸防災や治水・利水という観点に加え、環境保全機能や親水性が重視されるようになっているのが特徴的であり1)，東京湾や大阪湾の沿岸域では海上公園や埠頭公園が、河川や池などの周辺には親水公園が多く見られるようになってきた。

このように海辺・水辺の親水機能が注目されるようになったのは、かつて高度成長期に姿を消していた水辺空間が、地域住民、特に都市生活者にとって快適性の高い空間であったことが再認識されてきた結果ととらえることができよう。しかしながら、今日一般的に用いられるようになった水辺空間の「親水性」あるいは「親水機能」について定量的に評価しようとする試みは、村川ら2)～4)の研究をはじめいくつかの例が見られるものの、十分に研究が進んでいるとは言い難い状況にあり、成果の蓄積と計画への反映が待たれる分野である。

以上のような認識から、筆者らは海岸・河岸、公園などにおける水辺空間整備を進めるにあたり、親水性が効果的に実現されるための方向性を求めるため、住民の意識および親水行動に基づく水辺空間の研究を着手することにした。本研究はその第一歩として、居住環境と親水行動の関連性を把握することにより、親水行動の生起する背景を考察することを目的としたものである。
2. 研究方法

2.1 研究の概念

本研究では「人々が親水性を求めて水辺に行く」という移動行動を「親水行動」と呼ぶ。したがって、親水行動は人々が余暇に行う場所的移動を伴う様々な行動、特に常日頃の行動や、都市化の進行を伴って自然を求める行動が増加する傾向にあることを指摘し、Human Ecological Space（H.E. スペース）という生物的空間概念を用いて人々の意識・行動を説明しているが、筆者の主観として親水行動も様々な文脈の中でとらえ得ると考えられる。すなわち、都市化の推進、環境条件の変化、それに対する住民の評価等、行動動機の発生を経て親水行動に至る過程を図-1に示すモデルと捉え、住居空間の変化、H.E. スペースの欠損を親水行動によって補完し得るのではないかと考える。

そこで、研究方法として、図-1の過程に従い、都市化および住居環境を示す物理量、住民の意識を示す心理量、実際の行動量を順次把握し、相互の関連性を明らかにする。そこで、都市化の指標としては人口密度を、住居環境の物理的指標としては住居地の空間利用状況を用い、心理量および行動量についてはアンケート調査によって把握することとした。これらの資料を得るため、以下のとおり調査を行った。

2.2 調査対象地

都市化の指標となる人口密度および水辺環境を考慮し、図-2に示す9都市を調査対象都市として選定した。さらに各都市について、基準地図メッシュ（約1km²）に基づき、人口密度および水辺からの距離の異なる3地区を選定し、合計27地区を調査対象地区とした。図-3は品川区および大田区における対象地区を例示したものである。なお、各対象地区の特性概要は表-1に示すとおりであり、人口密度は昭和60年度国勢調査結果（総務省統計局より収集）、水辺との距離は1/25,000の地形図より読み取ったものである。

2.3 調査期間

平成3年7月27日～8月30日

2.4 調査内容

1) 土地利用による空間分類

地区レベルにおける住居環境を示す物理的指標として各地区的土地利用状況を把握するため、用途を表-2に示す4つの空間に分類し、1/2500の地形図よりデジタルデータを利用して各空間の占有率を求めた。なお、この空間分類は住民の生活とのかかわりの度合いならびに先述したH.E. スペースの存在様式という観点から行われている。

2) 住居前面における写真撮影

住民が日常的に接する住居周辺の物理的環境を把握するため、各地区10世帯の住居前面道路において魚眼レンズによる写真撮影を行った。撮影にはFish Eye-Nikkor 180°OP（正射影型魚眼レンズ）を使用し、被験者宅の前面道路中央において地上1.5mにおける水平面
上方および鉛直面2方向の写真撮影を行った。撮影写真の一例を写真-1に示す。これより、デジタイザーを利用して水平面上方の天空率および鉛直面の被映率を測定し、地区別平均値を求めた。なお、天空率および被映率は、正射型魚眼レンズによる写真において天空および植栽部分の面積比率を求めたもので、それぞれの立体角を投射率を表す。すなわち、撮影地点における視覚的環境を示し、住民の心理およびH.E.スペースに影響を及ぼすパラメタと考えられる。

3) 住民アンケート調査

対象地区における住民の意識・行動を把握するため、18歳以上の住民を対象として、表-3に示すように住居の広さや利便性などの住宅利用条件10項目、居住環境に対する満足度・重要度評価23項目、行動の実態に関して6設問52項目および属性8項目を調査した。サンプリングでは、各区に5つの格子状に分割し、各メッシュより1世帯を抽出し、原則として配票調査法により行った。これより、各地区20サンプル、全地区で540サンプルを解析対象資料とした。なお、項中によって未回答のものもある。被説者者属性は表-4のとおりである。

3. 都市化と空間分布特性

3.1 都市化と土地利用空問率

まず、都市化と地地区レベルでの物理的な条件の関係を把握するため、各々の代表的指標と考えられる人口密度と土地利用空間率の関係をプロットし、図-4に示した。まず社会的空を見ると、人口密度の増加とともに減少する傾向が明確に見られ、人口密度が10,000人/km²を超える品川区、大田区では5%未満となってい

表-1 調査対象地区の人口密度および近隣の水辺

<table>
<thead>
<tr>
<th>対象都市</th>
<th>地形図</th>
<th>地形図</th>
<th>人口密度（人/ha）</th>
<th>総数</th>
<th>設置の代表的水辺（視覚距離）</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 高田市（千葉県）</td>
<td>5240−50−36</td>
<td>5240−50−47</td>
<td>4.48</td>
<td>157</td>
<td>横須賀層（2.5 km）</td>
</tr>
<tr>
<td>B. 品川区（東京都）</td>
<td>5339−36−48</td>
<td>5339−36−28</td>
<td>2.8</td>
<td>14</td>
<td>多摩川（0.8 km）</td>
</tr>
<tr>
<td>C. 田辺市（神奈川県）</td>
<td>5339−36−75</td>
<td>5339−25−58</td>
<td>1.5</td>
<td>294</td>
<td>多摩川（1.5 km）</td>
</tr>
<tr>
<td>D. 鎌倉市（神奈川県）</td>
<td>5259−74−61</td>
<td>5259−74−91</td>
<td>4.0</td>
<td>157</td>
<td>横須賀層（2.5 km）</td>
</tr>
<tr>
<td>E. 姫路市（兵庫県）</td>
<td>5436−36−88</td>
<td>5436−36−28</td>
<td>6.6</td>
<td>240</td>
<td>姫路市（2.5 km）</td>
</tr>
<tr>
<td>F. 京都府（京都府）</td>
<td>5259−36−60</td>
<td>5259−36−91</td>
<td>7.7</td>
<td>274</td>
<td>鎌倉市（2.5 km）</td>
</tr>
<tr>
<td>G. 長崎市（長崎県）</td>
<td>5133−17−60</td>
<td>5133−17−69</td>
<td>1.0</td>
<td>466</td>
<td>多摩川（0.5 km）</td>
</tr>
<tr>
<td>H. 福岡市（福岡県）</td>
<td>5030−23−74</td>
<td>5030−23−92</td>
<td>7.7</td>
<td>240</td>
<td>福岡市（2.5 km）</td>
</tr>
</tbody>
</table>

表-2 土地利用における空間分類

<table>
<thead>
<tr>
<th>分類</th>
<th>空間特性</th>
<th>対象例</th>
</tr>
</thead>
<tbody>
<tr>
<td>社会的空間</td>
<td>地域住民が自由に利用可能な公園、R.E.スペースを多含する。</td>
<td></td>
</tr>
<tr>
<td>社会的施設</td>
<td>社会的空間の機能を満たす施設、従来の住民意識を満たす代替施設。</td>
<td></td>
</tr>
<tr>
<td>外的施設</td>
<td>地域住民の生活の必要と直接関連がある施設、R.E.スペースを含む施設。</td>
<td></td>
</tr>
<tr>
<td>個人的空間</td>
<td>個人の生活を支える施設、R.E.スペースを含む施設。</td>
<td></td>
</tr>
</tbody>
</table>

写真-1 魚眼レンズによる写真撮影例
表3 アンケート調査項目

<table>
<thead>
<tr>
<th>項目</th>
<th>質問内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 属性</td>
<td>性別、年齢、職業、家族構成、住環境変動、居住性状、前居住地</td>
</tr>
<tr>
<td>② 居住環境</td>
<td>住居の広さ、設備に関する項目、利便性、交通による項目、各地の環境条件、住環境に関する対策、不快感に関する項目、地元の調査に関する項目</td>
</tr>
<tr>
<td>③ 居住環境に対する意識</td>
<td>居住環境に対する意識、生活における安心感、安心感に関する項目</td>
</tr>
<tr>
<td>④ 行動の実態</td>
<td>余暇活動、親子活動のタイプ及び頻度、日常生活における水辺における接触度、代償活動、他活動の有無</td>
</tr>
</tbody>
</table>

表4 被験者の属性

<table>
<thead>
<tr>
<th>項目</th>
<th>人数 (%)</th>
<th>項目</th>
<th>人数 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>性別</td>
<td></td>
<td>市</td>
<td></td>
</tr>
<tr>
<td>男性</td>
<td>234人 (41.5%)</td>
<td>1人</td>
<td>1人 (5.1%)</td>
</tr>
<tr>
<td>女性</td>
<td>315人 (58.5%)</td>
<td>4人</td>
<td>1人 (21.1%)</td>
</tr>
<tr>
<td>不明</td>
<td>1人 (0.2%)</td>
<td>3人</td>
<td>0人 (0.2%)</td>
</tr>
<tr>
<td>年齢</td>
<td></td>
<td>20〜29歳</td>
<td>10人 (1.6%)</td>
</tr>
<tr>
<td>30〜39歳</td>
<td>43人 (7.2%)</td>
<td>40〜49歳</td>
<td>72人 (12.2%)</td>
</tr>
<tr>
<td>50〜59歳</td>
<td>121人 (20.2%)</td>
<td>60〜69歳</td>
<td>81人 (13.5%)</td>
</tr>
<tr>
<td>70歳以上</td>
<td>3人 (0.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>戸数</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>全世</td>
<td>168人 (31.1%)</td>
<td>1〜2年</td>
<td>1人 (2.1%)</td>
</tr>
<tr>
<td>3〜5年</td>
<td>58人 (10.5%)</td>
<td>6〜10年</td>
<td>32人 (5.4%)</td>
</tr>
<tr>
<td>11〜15年</td>
<td>68人 (12.5%)</td>
<td>15年以上</td>
<td>51人 (8.7%)</td>
</tr>
<tr>
<td>その他の</td>
<td>81人 (15.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図4 人口密度と土地利用時間

図5 人口密度と住居周辺空間

る。一方、個人の空間と外的施設は人口密度の増加に伴って、ばらつきはあるものの増大する傾向にあり、社会的施設は若干増加する傾向があるが、人口密度に比例した顕著な増大は示していない。すなわち、都市化に伴って社会的空間が減少し、これに相当する土地は個人の施設または外的施設によって占められている。前者が増大する地区は居住主体地区、後者が増大する地区は事業主体地区と見なされるであろう。

3.2 都市化と住居周辺の空間

次に、住居周辺における視覚的空間環境を見るため、人口密度と住居前面の天空率および被稲率に関係を図5に示す。これを見ると、天空率は各地区とも50％以上を占めているが、人口密度の増加とともに減少する傾向が見られ、人口密度が5,000人/km²を越えると減少傾向が現れている。また、被稲率も人口密度の増加とともに減少する傾向が見られるものの、鎌倉市や大田区などある程度の比率を維持している都市も見られ、ここでは人为的に稲を確保していることが推察される。一方、住宅、道路などの比率は増加する傾向が見られ、住居周辺の視覚的環境として自然的な要素を減し、人工的要素が増加していることがわかる。

3.3 都市化とHuman Ecological Space

以上に述べた都市化的レベルと空間量の関係を前提したH.E.スペースの概念を用いて考察すると、まず土地利用においてはH.E.スペースを多く包含する社会的空間の減少が顕著である。一方でH.E.スペースがゾロー外的施設および住民以外にとっては外的施設に相当する個人的空間が増加し、H.E.スペースの補完機能を持つ社会的施設には特に増加が見られていない。また、住居周辺における天空率、被稲率などの自然的要素も減少傾向にあり、視覚的なかかわりの対象も都市化とともに失われつつあると推察される。総括すれば、都市化の進展に伴い、H.E.スペース、すなわち住居地区において住民がかかわりを持つ空間の量は明らかに減少していると言える。

4. 居住環境に対する意識・評価

以上の要な物理的環境条件の変化およびその結果から推定されるH.E.スペースの変化は、住民の意識・行動に何らかの影響を及ぼすものと推察される。そこで、次に居住環境に対する満足度および重要度評価より、住民の意識構造を把握する。なお、満足度は対象項目の現状に対する評価を表し、環境に対する左右されやすい尺度であると考えられる。また、重要度は対象項目に対する被験者の価値観を表し、地区特性に影響されにくい尺度であると考えられる。

4.1 地区別平均値の概要

まず、環境評価項目23項目に対する満足度および重要度評価傾向の概要を示すため、5段階尺度によるアンケート回答結果より地区別平均値を算出した。この地区
別平均値より、全地区の平均、最大、最小および標準偏差を求め、図-6に示す。これより、現状評価を示す満足度は地区によってかなりばらつきのあることがわかる。中でも、地域の環境条件を反映して「水辺の多さ」をはじめ周辺の環境に関する項目で特にこれが顕著である。具体的には、鴨川市、柳川市、鎌倉市などでは全体的に評価が高く、特に周辺の環境に関する項目で満足度が高い傾向にあった。一方、京都市、大田区、品川区などでは周辺環境に対しては不満傾向を持つが、交通や賃貸物の便については満足度が高くなっていた。また、価値観を示す重要度については、各地区とも平均値で負の値を示す項目、すなわち不要と考えられている項目はなく、プロフィールも似ていた。相対的に見れば、水辺や散歩道の重要性は低い傾向にあった。

4.2 因子分析による環境因子の構造

これらの居住環境の構成因子を把握するため、地区別平均値を用いて因子分析を行った。分析方法として、共通性の初期値はSMC（Squared Multiple Correlations）によって推定し、主因子法による反復推定を行って初期因子負荷行列を求め、更にパリマックス回転を行った。因子数は、最初に求めた因子負荷行列で固有値1.0以上の因子を抽出して決定した。分析結果を表-5および表-6に示す。なお、同表では因子負荷量が0.4以上を記載し、各因子ごとに負荷量の高い順に並べている。

現状評価を示す満足度では4因子が抽出され、累積寄与率は89.6%であった。各因子の意味は、それぞれ「周辺環境」、「居住性」、「利便性」、「保育性」、「周辺空間」と解釈される。

満足度および重要度における環境因子を、その意味と分類された項目から対応づけてみると、満足度では周辺環境として同様の判断基準で評価されている項目が、重要度では住居の快適性、地域環境、自然的要素、周辺空間など別々の価値観で認識されていると推察される。また、満足度では因子のひとつとなっている保育性は、重要度では独自の評価軸上になっている。

この中で、「周辺の水辺の多さ」は、満足度では第1因子の「周辺環境」に、重要度では第6因子の「周辺空間」に属している。

4.3 MSAによる環境因子の構造

因子分析により環境因子構成の概要を把握できたが、人々の意識構造、特に水辺の位置付けを更に詳しく把握しておくため、MSA（Multiple Scalogram Analysis：多重尺度解析）による分析を行った。MSAは各項目に対する反応パターンの類似性から各項目を分類するとともに各項目の系列構造を明らかにする分析手法であり、ここでは満足度および重要度の原データ（個体別データ）を用いて、久野らが提案した拡張型MSAによって計算を行った。なお、満足度では「非常に満足」、「満足」および「どちらでもない」を正反応、重要度では「非常に重要」および「重要」を正反応とし、計算条件として、各項目の反転はなし、再現性基準は0.7以上、各系列の2項目目以降の重複はありとした。

分析結果は図-7に示すとおり、満足度では8つの系列が、重要度では6つの系列がそれぞれ抽出された。ここで縦軸は各項目への反応率を示し、項目間を結ぶ線は反応性の有無を表している。すなわち、線で結ばれた項目間では、下位項目に反応していればその上位項目にも反応していると解釈できる。例えば満足度の第一系列では「天候」、「気候」の下位に「温度」があることから、「温度」に満足している人は、「天候」や「気候」にもおおむね満足していると解釈できる。

この結果を因子分析結果と対比すると、図中に示したように満足度・重要度とも分類は類似しており、満足度では因子分析結果よりも更に細分類されている。また、項目間の階層の構造が明らかとなり、例えば居住性に満足している人は利便性にほぼ満足しており、窓からの景色や周辺の静けさに満足している人はおおむね周辺環境に対して満足していることがわかる。また、重要度では、周辺の憩いの空間に対する重要性は比較的下位にあるが、これを重要と認識している人はその上位にある居住の快適性、利便性、地域環境を重視していることが示されている。

ここで、「周辺の水辺の多さ」に着目すると、満足度では周辺の憩いの空間を示す系列の上位にある、下位には「庭・バルコニーの広さ」や「窓からの景色の美しさ」
ある。すなわち、憩いの空間をまず居住レベルから求めていると解釈でき、水辺空間への評価はこれらと関連を持ちながらも希望水準は相対的に低くなっていることが推察される。また、重要度では次下位にあり、水辺を重要と認識している人はおおむね他の項目を重要視していることがわかる。換言するならば、水辺環境整備よりも居住の快適性や利便性などの方が重要視されていると言える。

4.4 都市化と居住環境評価

都市化のレベルと居住環境評価特性の関係性を把握するため、満足度の各因子に対する因子得点と人口密度との関係を図-8に示した。これを見ると、周辺環境および保健性に対する満足度評価は、人口密度とともに悪くなる傾向にあり、逆に利便性の評価は一部の地区を除けば良くなる傾向が見られる。居住性については人口密度と対応した関係は特に認められない。なお、重要度についても同様の分析を行ったが、人口密度との対応性は明確には現れなかった。すなわち、居住環境に対する重要性の認識は、都市化のレベルとはそれほど関係なく形成されているが、現状に対する満足度は都市化の進行とともに変化し、周辺環境や保健性の評価は悪くなり、利便性については良くなる傾向にあると言える。

ちなみに、周辺環境への満足度について項目別評価に頭をもって見ると、「周辺の水辺」は「憩いの拠点」「周辺の利便性」「散歩道」「空気のきれいさ」「気温」などの自然的要素に関連する項目とともに、都市化に伴う低下が顕著であった。

5.都市化と分散行動

次いで、行動レベルの反応を見るため、アンケートによって分散行動量を調べた。分散行動とは居住地域近隣への行動から長期旅行などまでを含んだ場所の移動を伴う行動の総称であり、H.E.スペース・モデルでは、居住地において欠けたH.E.スペースを補完し、人間環境の安定を回復する機能を持つと考えられている。ここでは主に時間的制限条件から行動圈を徙動圈、日帰り圈、宿泊圈の3つに区分して行動特性を把握することとし、この3類型をそれぞれ1次分散行動、2次分散行動、3次分散行動と呼ぶ。

アンケート調査では、想定される行動類を1次、2次、3次分散行動についてそれぞれ10項目、12項目、7項目設定し、行動先別の行動類度を調査した。この回答結果より、まず各項目別に行動回数の地区別平均値を求め、更に行動先を表-7に示すように類型化し、類型別年間行動量を求めて解析資料とした。

5.1都市化と各種分散行動

まず、分散行動と都市化との直接的な関係を見ておくため、各地区の類型別分散行動量と人口密度の関係を図-9に示す。これを見ると、1次分散行動では、都会の施設型分散行動が人口密度の増加とともに増大する傾向にあり、屋外施設型および屋内文化施設型でも相対的に行動量は少ないながら同様の傾向が見られる。一方、親水行動は鷺沼市、鶴岡市等の特定地区で行動量が多く、人口密度の増加に対応した傾向は見られていない。2次分散行動では、屋内文化施設型の行動が人口密度の増加

<table>
<thead>
<tr>
<th>1次分散行動</th>
<th>2次分散行動</th>
<th>3次分散行動</th>
</tr>
</thead>
<tbody>
<tr>
<td>行動類</td>
<td>項目別行動先</td>
<td>行動類</td>
</tr>
<tr>
<td>屋外施設型</td>
<td>公園、グラウンド</td>
<td>屋外施設型</td>
</tr>
<tr>
<td>1次親水行動</td>
<td>海辺、川辺</td>
<td>2次親水行動</td>
</tr>
<tr>
<td>屋内文化施設型</td>
<td>スポーツ施設</td>
<td>2次親水行動</td>
</tr>
<tr>
<td>1次親水行動</td>
<td>湖沼、河原</td>
<td>2次親水行動</td>
</tr>
</tbody>
</table>

注）空欄は、縦方向に対応する類型がないことを表す。
図-9 人口密度と分散行動量
水辺からの距離が近い地域では日帰りでの行動量は少なく、代わりに宿泊施設への親水行動が増加する傾向が観察された。ただし、河川沿いの水辺空間に関しても、距離のみで行動量が規定されているわけではないことから、河岸の環境整備状況に依存していることが推察される。

6. 都市化から行動へのプロセス

これまでの、居住環境の物理的な指標である空間分布特性、住民の居住環境評価特性、行動特性をそれぞれ都市化の指標である人口密度との関係から考察してきたが、以下ではこれらの各要素間の関連を分析し、親水行動の背景を捉えてみる。

6.1 空間分布と居住環境評価

人口密度に対応して変化の見られた社会的空間、外的施設、個人的空間および天空率を縦軸に、周辺環境に対する満足度の因子得点を横軸にとってプロットし、図10に示した。

これをみると、社会的空間の多いほど満足度が高く、外的施設の多いほど満足度が高い傾向が見られ、個々の空間および天空率と満足度の関係は明瞭ではない。これより、都市化に伴う社会的空間の減少と外的施設の増加が居住環境評価、特に住居周辺環境に対する満足度を低下させていることがわかる。一方、個人的空間の増加と満足度の関連性が見られないのは、住宅地周辺の整備方法や地域の雰囲気などについて評価が異なるためではないかと考えられる。

6.2 居住環境評価と親水行動

次いで、居住環境評価において特に都市化との関連性が強く見られた周辺環境への満足度と、親水行動量との関係を検討する。
関係を図-11に示した。
これを見ると、1次親水行動の比較的多い地区では満足度の評価も高く、これらの地区では居住地周辺の満足できる周辺環境・水辺環境に対して行動が多く、また同時親水行動によって満足感を得ているという相乗的な関係にあることが推察される。具体的には鎌倉市、鴨川市、柳川市、福岡市などにこのような地区が見られる。
しかし、逆に満足度の低い地区では親水行動が比較的多く、周辺環境への不満に対して分散行動が生じていることも考えられる。2次親水行動では、鎌倉市および鴨川市に行動量の多い地区が見られ、この地区では周辺に対する満足度は比較的高くなっている。3次親水行動では満足度に対応した特定の傾向は見られないが、満足度の低い地区に親水行動の比較的多い地区が見られ、1次および2次親水行動とは異なった傾向を示している。
以上のことから、五感による快適性や居住地周辺の憩いの空間が充足されていること、1次および2次親水行動との関連が深いと言える。また、水辺に近い地区では親水行動が多いことを考え合わせると、居住地周辺の水辺空間がこれらの快適性や憩いの空間の要素となっていることが考えられる。このような地区を除けば、行動量のレベルは低いながらも満足度評価の低い地区で幾分1次、2次親水行動の多い傾向が見られた。しかし、3次親水行動は、満足度の低い地区では相対的に多い傾向が見られた。これらを総合して考えると、水辺を含む周辺環境への不満は潜在的に親水希望を増大させているが、行動先の有無、時間的・距離的制約、代替行動先などの要因により行動に直接反射しにくいことを示しているのではないかと推察できる。そして、居住地の近隣および周辺地図では充足できない場合、親水希望を宿泊地に求め、近隣の水辺環境に左右されない3次親水行動が比較的多くなっているものと解釈できる。

7. まとめ
本研究では、親水性に対するアプローチの第一歩とし

図-12 親水行動の背景関連図

—160—
て、都市の人間生態という観点から親水行動の生起する背景を明らかにしようと試み、都市化に伴う居住環境と住民の意識・行動の関連性を考察した。

各要素間の関連を要約すると、以下のとおりである。
① 都市化の進行に伴って居住地の物理的環境は明らかに変化し、田畑、水路などの2次自然空間が減少し、人工的施設が増加する。
② 居住環境因子における水辺の重要性は相対的に見ると低い。一方、住民の価値観に地域差はない。
③ 都市化の進行、空間率の変化に伴って住民の意識、特に周辺環境に対する満足度は低下する。
④ 都市化とともに分散行動が増加する傾向が見られ、何らかの分散圏が発生していることが推察される。しかし、行動に伴う制限要因によりこの両者は必ずしも一義的な関係として顕在化していない。
⑤ 親水行動は、1次（徒歩圏）および2次（日帰り圏）行動では都市化に対応する顕著な増加は見られず、近辺の水辺環境条件に左右されていると考えられる。3次親水行動は他の分散行動とともに都市化に伴う増加傾向が見られる。
⑥ 水辺の周辺地区では周辺環境への満足度が高く、かつ1次、2次親水行動が多い。従来の水辺美化は、逆に満足度の低い地区で多い傾向がある。

以上より、都市化の進行、居住地におけるかかわりの空間（H.E.スペース）の減少、周辺環境に対する不満の発生、その解決の一つとして親水希求の発生・増大というプロセスを通じて親水行動が生起し、その結果、満足を得て情緒の安定回復がなされていることが推察される。しかし、現実化される行動量は近辺圏における行動制約・促進要因の影響を強く受け、特に満足感を得られる水辺の有無が大きく関与することが示唆された。本研究の総括として、これらの関係をまとめ図12に示した。

本研究の結果、生活環境の中における「水辺」の位置づけおよび親水行動の背景を概観でき、その要素間の関連性をある程度推定的に与えることができた。今後の課題として、住民の親水希求を生起させる要因を更に掘り下げる把握とともに、本研究から推察された制約・促進要因と行動量の関係や水辺の水辺親水機能の構成要素を明らかにしていく必要がある。

謝辞

本研究を進めるにあたりは、武蔵野美術大学の立花直美教授ならびに総武武学大学の品田穣教授のご指導・ご助力を仰ぎました。ここに深謝致します。また、拡張MSA分析にあたり、プログラムを提供して頂いた名古屋大学の久野覚教授に感謝致します。現地調査および資料解析においては当時日本大学学生であった長久保志喜、天水晃司両名の多大な協力を得たことを感謝致します。

参考文献
1）日本建築学会編：建築と都市の水環境計画、財団、1991
2）村川三郎、飯尾昭彦、西田勝、西口名大作：長良川・筑後川・石見川流域の特性と居住環境評価の分析、住民意識に基づく水環境評価に関する研究 その1、日本建築学会計画論文報告集、第355号、p.20～31、1985.9
3）村川三郎、飯尾昭彦、西田勝、西口名大作：長良川・筑後川・石見川流域の特性と河川環境評価の分析、住民意識に基づく水環境評価に関する研究 その2、日本建築学会計画論文報告集、第363号、p.9～19、1986.5
4）村川三郎、西口名大作：住民意識による都市内河川環境評価の分析、河川環境評価手法に関する研究 その1、日本建築学会計画論文報告集、第366号、pp.42～52、1986.8
5）長久保志喜、村川昭雄、渡辺清俊、近藤健雄：親水行動と居住環境の関連性に関する研究 その1、居住環境における住民意識の把握、日本建築学会学術講演会概要集環境系、pp.467～468、1992.8
6）渡辺清俊、村川昭雄、近藤健雄：同上 その2、都市化に伴う水辺環境の変化、日本建築学会学術講演会概要集環境系、pp.469～470、1992.8
7）村川昭雄、渡辺清俊、近藤健雄：居住環境における意識構造の分析、日本建築学会学術講演会概要集環境系、pp.471～472、1992.8
8）品田穣、立花直美、飯尾昭、茂大志民：人間居住環境としての都市の生態学的解明、私学科学振興財団 研究報告書Vol.4、pp.31～60、1981
9）品田穣、立花直美、杉山幸義：都市の入間環境。都市環境学シリーズ3、共立出版、1987
10）久野覚：居住環境評価に関する研究、東京大学学位論文、1980
11）平崎信宏：水空間の演出、鹿島出版会、1981
12）松浦茂樹、宮山幸孝：水辺空間の魅力と創造、鹿島出版会、1987
13）村川昭雄、村川昭雄・品田穣：水辺の計画と設計、鹿島出版会、1985
14）渡部一：生きている水路、東京大学出版会、1984
15）都市環境研究会：都市のウォーターフロント 沿岸域の管理・設計、都市文化社、1988
16）都市環境研究会：沿岸都市とオープンスペース、都市文化社、1991
17）田村貞寿：興水 土・井手久登・田代順恵：緑と居住環境、古今書院、1984
18）日本建築学会編：建築と水のレイアウト、日本建築学会設計計画パンフレット29、財団、1984
19）運輸省国際交通局観光局観光部：各国ドーム観光主導監理：観光情報ファイアル、1989
20）江本六、有馬宏志：アクアミート調査の方法、朝倉書店、1987
21）海保く離：データ解析入門、日本文化科学社、1980

（1992年12月10日原稿受理、1993年4月15日採用決定）