STUDY ON THE TEXTURE ANALYSIS FOR THE IMAGE OF ARCHITECTURAL FACADE PHOTOGRAPH

Yasushi KAWASAKI

The purpose of this study is to investigate the change of view of the digital image of architecture according to the distance using image processing technique. First we applied Texture Analysis(TA) for the image of architectural photographs which were taken from 6 levels of distance. The 4 values of TA based on ‘gray level co-occurrence matrix’ were calculated and arranged according to the distance. Next regression analysis was applied for each value arrangements. It is clear that change of 4 arrangements are almost the same as the index function and close to one value by degrees. In concluding, we can understand the change of view of the image of architectural photographs concretely and measurably by using TA.

Keywords: architectural photograph, facade, texture analysis, image processing, gray level co-occurrence matrix

1.はじめに

1-1.研究の目的

規模の大きな建築施設や土木構造物などの設計に際しては、都市景観に与える視覚的な影響等を事前に把握したり、これらを正確に予測することが益々重要な課題となっている。これに対してはコンピュータを利用した景観シミュレーションの研究に加えて、景観の構造や見え方を分析し、都市景観の基礎的な情報を提示する研究が数多く報告されている。本研究はこれらの中で景観の遠近感について考察するものであり、建築画像を分析して建築外観の見え方の変化について検討を行う。具体的には、視距離の増大により建築外観の見え方が次第に判然としなくなる状態を計量的に把握する目的で、画像処理のテクスチャ解析を用いて、視距離に応じた建築壁面画像のテクスチャ特徴量を算出し、その変化の傾向について考察する。

1-2.研究の位置づけ

本研究の関連研究としては以下のようなものがある。まず、建築外壁や景観要素の視距離による見え方の変化は、識別尺度の研究を先駆的な成果として数多くの関連研究がある。これらは建築外壁や都市景観の構成要素を視覚対象として、視距離に応じた見え方の変化について様々な視認テストを実施し、距離帯と視認できる要素の関係について分析を行っている。また建築外観や都市景観の構成および複雑さを、景観写真に基づいて計量的に分析する研究がある。ここでは主に建築や都市建築群のファサードもしくはスカイラインの輪郭線を抽出し、独自の分析法やフランタル次元やゆらぎなどの数学的指標を利用して景観の複雑さや特徴について分析を行っている。ただしこれらは距離による見え方の変化を主要なテーマとしているわけではない。その他、建築材料のテクスチャの見え方は、様々な材料の仕上げ板を視覚に対して、粒度や観察距離に対する視覚的なあらさなどの関係を実験・分析した一連の研究がある。これらは建築材料のテクスチャの物理量と視覚性の関係を分析する研究である。

本研究は建築壁面（ファサード）を視覚対象として、被験者を利用した視認テストや視覚実験を行うものではない。また景観写真を利用した既往の分析研究のように、壁面の構成要素の分解や輪郭線を抽出といった建築外観や壁面のモデル化は行わず、壁面画像の濃度分布をそのまま一つのテクスチャと見なし、これに対する統計を視距離との関係で分析している点に特徴がある。これまででは、画像処理の分野では領域判別などの目的でテクスチャ解析の手法が応用されてきたが、景観の遠近感を分析する目的で、建築壁面画像を対象にテクスチャ解析を使用した事例は見当たらない。

NII-Electronic Library Service
2. 研究の方法

画像処理におけるテクスチャの解析手法を用いて、近距離から遠距離までの視距離を段階的に変化させた建築物の眺望写真の画像分析を行い、主にテクスチャ特徴度と視距離による特徴度の変化について計量的に把握し、その結果について考察を行う。具体的には以下の手順で研究を進める。

① 建築物の写真撮影：100mから2000mの段階的な距離範囲で建築物の一部の写真撮影を行う。
② 視距離写真のデジタル化とグレースケール化：スライドフィルムに撮影した視距離写真をフィルムスキャナにてデジタル化し、さらにカラーピクセルを処理してグレースケール化する。
③ 粗度のブロック化に基づくテクスチャ特徴度の算出：各視距離での視距離写真のデジタル画像について、テクスチャ特徴度として平均・分散・歪度・尖度を求める。
④ 同時視距離生起行列に基づくテクスチャ特徴度の算出：視距離特徴度としてテクスチャの一様性・エントロピー・相関・コンタストをそれぞれ求める。
⑤ 計算結果の分析：上記の③・④のテクスチャ特徴度を視距離に応じて整理し、各視距離特徴度を変化させて分析し、検討する。
⑥ 結果のまとめと考察：視認テクスチャの既往研究の結果と比較し、本研究の解析結果について考察する。

3. 画像処理法におけるテクスチャの解析

3-1. 粗度のブロック化に基づくテクスチャ特徴度の計算方法

画像処理におけるテクスチャの解析法は、統計的な手法、構造的法およびスペクトル的法に大きく分ける。統計的な手法は木目や粒子などの特徴を含有するものと解析するのに有効であり、その画像の統計的性質により特徴を記述するものである。このような統計的法の中でテクスチャの特徴度の最も簡単な表現方法として領域の粗度のブロック化を用いる方法がある。この方法では全体が1になるように正規化された粗度のブロック化に、平均・分散・歪度・尖度を計算し、これらの値によってテクスチャを特徴づける。

1）平均：粗度の平均値

平均 \(\mu = \frac{1}{N} \sum_{i} p(i) \)

2）分散：粗度の分散値

分散 \(\sigma^2 = \frac{1}{N} \sum_{i} (i - \mu)^2 p(i) \)

3）歪度：粗度のブロック化の形状の対称性から歪みの程度を示す

歪度 \(\gamma = \frac{1}{N} \sum_{i} (i - \mu)^3 p(i) \)

4）尖度：粗度のブロック化分布の平均値の変異の集中度を示す

尖度 \(k = \frac{1}{N} \sum_{i} (i - \mu)^4 p(i) \)

3-2. 同時視距離生起行列に基づくテクスチャ特徴度の計算方法

粗度のブロックを、各画素の粗度が位置関係を独立に処理されるので、テクスチャを特徴づけるのに限界がある。そこで画素の粗度と位置を変数とした解析法として同時視距離生起行列（おそらくは粗度の共起行列、gray level co-occurrence matrix）に基づくテクスチャ特徴の計算方法がある。この方法ではまず画像の粗度のピクセルの点から一定の変位 \((\Delta x, \Delta y) \) の距離の点の粗度が \(j \) である粗度 \(p(i,j) \) を要素とする同時粗度生起行列を求め（図1）。次に要素の総和が1.0になるように正規化し、テクスチャ特徴度を計算する。

同時粗度生起行列を用いたテクスチャ特徴度として主なものが提案されているが、現状のものとして次のようなものがある。

1）テクスチャの一様性：\(p(i,j) \) の配列が多くの値からなっているほど、これが大きくなる。つまりこれが特徴の画像に対して存在する場合であり、均一性を示している。

テクスチャの一様性 \(\text{一様性} = \frac{\sum_{i} p(i,j)^2}{p(i,j)} \)

2）エントロピー：\(p(i,j) \) の値が等しく割り当てる場合ほど大きく、テクスチャの特徴度とは逆の性質を示す。

エントロピー \(\text{エントロピー} = -\sum_{i} p(i,j) \log(p(i,j)) \)

3）相関：\(-1\)～\(1\)の値をとり、2つの変数 \(i \) の比の関係の程度を示す。この値が大きいと \(\sigma \) の周期を持つ傾斜のパターンからテクスチャ特徴を抽出できる。

相関 \(\rho = \frac{\sum_{i} (i - \mu)(j - \nu)p(i,j)}{\sqrt{\sum_{i} (i - \mu)^2 p(i,j)} \sqrt{\sum_{i} (j - \nu)^2 p(i,j)}} \)

（右式の \(\mu, \nu \) は平均値）

4）コントラスト：画像についての粗度の濃度差を、i～i'の間の画像についての2乗平均を表し、粗度の高い画像対が多いほど、この値が大きくなる。

コントラスト \(\text{コントラスト} = \frac{\sum_{i} (i - \mu)^2 p(i,j)}{p(i,j)} \)

同時粗度生起行列に基づくテクスチャ特徴度の計算では、濃度のピクセルが \(0 \)・\(45 \)・\(90 \)・\(135 \)の4方向に解析する。また計算効率のため粗度レベルを簡略化するなどのアプロセスが通常とされるため、本研究ではこれにしたがって基本4方向について解析を行い、粗度レベルは156から32に階段変換している。また変数は最も1の1 pixelで計算を行う（図2）。

4. 建築物画像におけるテクスチャ特徴度の算出

4-1. 視対象と撮影条件

金沢市街の一部である北区新鶴小屋の西側壁面を視対象として選定する。選定の理由として、市内では数少ない高層建築であること、個性の少ないモルタルの一般的な外見であること、遠方までの視距離を変化させて観察できるということがある。また視点上はビルの北側距離Aは（120m）に加えて、岸川沿いのB点（600m）C点（820m）D点（1200m）E点（1450m）F点（2200m）の6カ所とした。なお北区新鶴小屋周辺は市街中央付近であり、内・外側の建物が立ち並んでいる。このため岸川沿いからの視点群からも北区新鶴小屋を連続的に見たことは困難である。この理由からA～F点の視距離は均等間隔にはなっていない（図3）。観察壁面の撮影条件は表1の通りである。なおレンズは人間の視界に近いと言わば55mmレンズとした。
4-2. 濃度ヒストグラムに基づいたテクスチャ特徴量
2002年2月24日・3月13日の2日においてA〜F点から撮影した建築壁面の同一の領域を対象とし、この画像に対して濃度ヒストグラムに基づいたテクスチャ特性量の算出を行った。この結果は図4（2月24日）および図5（3月13日）のようになる。ここで分析対象とする壁面部分はA〜F点のいずれの地点からも共通に観察できる最大部分（写真1）とし、その画像条件は119x113 pixel、600dpiとする。なおA〜F点では視方向に若干のばらつきがあるのとA地点を基準とした画像の歪み補正を施している。

図3 観察対象と撮影地点

表1 建築壁面の撮影条件

<table>
<thead>
<tr>
<th>撮影日時</th>
<th>2002年2月24日、天候：晴 - 薄曇、視程距離30km</th>
<th>時間：正午から30分</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002年3月13日、天候：晴 - 薄曇、視程距離40km</td>
<td>時間：正午から30分</td>
<td></td>
</tr>
<tr>
<td>カメラ：Minolta α 3000i</td>
<td>フィルム：Kodak EKTACHROME DYNIX 200</td>
<td></td>
</tr>
<tr>
<td>レンズ：55mm</td>
<td>フィルムスキャナー：Nikon COOLSCAN IV ED</td>
<td></td>
</tr>
</tbody>
</table>

4-3. 同時濃度生起行列に基づいたテクスチャ特徴量
北陸新幹線ビルの壁面画像に対して、同時濃度生起行列に基づいた4つのテクスチャ特性量を算出し、またそれらを整理して従基調に対する特性量の変化をグラフにして示す（図6〜9）。グラフの縦軸はテクスチャ特性量（無単位）、横軸は距離（m）。グラフ内の赤線は2月24日の結果、青線は3月13日の結果をそれぞれ示している。

5. テクスチャ特徴量の算出結果
5-1. テクスチャ特徴量の変化の傾向（2月24日）

1）観察条件
撮影日時は2002年2月24日の正午から30分以降、天候は晴 - 薄曇で視程距離30kmであった。この日はおおよそ晴れて見通し良好であるが、薄曇の関係で撮影時直射日光に強く陰影の影響は見られなかった。

写真1 分析対象とした壁面部分（赤枠の部分）

図4 濃度ヒストグラムとテクスチャ特徴量
2002年2月24日、晴 - 薄曇、視程距離30km
壁面に直射日光なし
2) 濃度ヒストグラムに基づいたテクスチャ特徴量（図 4）
①平均：A地点（120m）で最大値（122）となっているが、それ以外
は階調100 〜 120 の範囲にある。
②分散：記録の増大とともに著しく減少し、1650m以上で一定値
に近づいている。
③歪度：B地点（600m）以外で負の方向（平均より階調が低い方向）
に若干の偏りがある。
④尖度：A地点（120m）で高い値（4.3）を示し、B地点（600m）で
いったん減少するが記録の増大とともに増加している。
③同様度遺生行行為に基づいたテクスチャ特徴量（図6 〜 9）
①テクスチャーの一様性：A地点（120m）からB地点（600m）で若干減
少しが見られるが、それ以降は記録の増大にともない一様性の値
は急激に増加している。
②エントロピー：全方向（0 〜 45・90 〜 135°）で記録の増大にと
てもエントロピーは減少し、1500m以上で一定値に近づいてい
る。
③相関：全方向（0 〜 45・90 〜 135°）でほぼ一定値をとっているが、
記録に応じて若干の増加の傾向が見られる。
④コンテスト：全方向（0 〜 45・90 〜 135°）で記録の増大にと
のもコンテストは減少し、1500m以上で一定値に近づいてい
る。なお0° 方向については A地点（120m）での値が他の3 方向
と比較して小さい値となっている。
5 〜 2. テクスチャー特性の変化の傾向（3 月 13 日）
1）観察条件
撮影目時は2002年3月13日の午前から30分以内、天気は快晴で
記録距離40kmであった。この日は快晴で見通しは極めて良好であ
り、撮影時には直射日光による強い陰影の影響が見られた。
2）濃度ヒストグラムに基づいたテクスチャー特徴量（図 5）
①平均：A地点（120m）で最小値（92）となっているが、それ以外は
階調100 〜 120 の範囲にある。
②分散：記録の増大とともに著しく減少している。
③歪度：全ての距離で正の方向（平均より階調が高い方向）に若干
の偏りがある。
④尖度：A地点（120m）で高い値（5.9）を示し、それ以外ではほぼ
一定値（2.5 前後）となっている。
3）同様度遺生行行為に基づいたテクスチャー特徴量（図6 〜 9）
①テクスチャーの一様性：A地点（120m）からB地点（600m）まで変化
は見られないが、それ以降は記録の増大にともない若干増加し
ている。
②エントロピー：A地点（120m）からB地点（600m）まで変化は見ら
れが、それ以降は記録の増大にともないエントロピーは緩
やかに減少している。
③相関：A地点（120m）からB地点（600m）まで比較的大きな値の増
加が見られ、それ以降は緩やかに増加となる。
④コンテスト：A地点（120m）からD地点（1200m）まで記録の
増大をもとめコンテストは急激に減少し、1500m以上で一定値
に近づいている。
5 〜 3. 算出結果の考察
1）テクスチャー特徴量の変化
濃度ヒストグラムからは、特に分散が記録にともない著しく減
少ししていく傾向が読み取れ、これは一般に呼ばされる明暗のコ
ントラストが低くしていこうやけの現象と解釈できる。また同様度
遺生行行為からは、テクスチャー的一様性・エントロピー・コンテ
ストがおおよそ500mから1500mの間で急激に変化し一定値に近づいて
いく傾向が読み取れる。これは記録の増大にともない平野が次第
に一様になって見えるような密度の現象を示している。そしてこ
れらの変化の度合いは、天候・記録距離などの環境条件や日時・記
録距離などの観察条件で変動するものと思われる。具体的には2月24
日と3月13日では記録距離や直射日光の影響の違いがあり、その結
果として特にテクスチャーの一様性の記録に対する変化の度合いや
算出値には大きな差が見られた。またコンテストの値は3月13日
と比較して2月24日の方が全体的に小さく、より短い記録範囲で
一定値に近づいていく傾向が見られた。
記録にともなうテクスチャー特徴量の変化が直線的でないのは、
幾何学的遠近と天気によって生じる影響が大きく現れているものと推察できる。こ
れについては、野外における物体の位置が記録に応じて指数関数
的に変化し、背景の明暗の近似に従って物体の明暗の関係を考えら
れる。これは天気変化による明暗効果を示すものとして知られてお
り、天気や湿度（消光係数）などを数式と関連付けられた関数式
i が提案されている。ただし、このような物理現象と歪曲写真のテクスチャー特徴
量の変化を直接関連づけることは、現時点での研究範囲ではでき
ない。
2）テクスチャー特性の変化に対する回帰分析
同様度遺生行行為に基づくテクスチャー特性値は、記録の増大に
ともない曲線的に変化することが把握できる。そこでこれらの算出
結果に対する回帰分析を行い、主要な関数形に対する当てはめとその
適合度について検討を行う。具体的には以下に示す回帰直線・指数
曲線・修正指数曲線・成長曲線（ロジスティック曲線）に対する
それぞれの関数a・bと適度（修正決定係数および修正相関
係数 R ）を求め、テクスチャー特性値の変化に対する関数近似につい
て検討を行う。
回帰直線
指数曲線
修正指数曲線
ロジスティック曲線

Y = a X + b
Y = a b^x
Y = k a X
Y = K (1 + a e ^t)
X ： 距離、K ： 上限値
なお修正指数曲線およびロジスティック曲線の上限値Kは次のよう
な方法で求める。まずYの値を横軸により、Yの増分ΔYをYで
割った値を縦軸にとり相関を求める。そして縦軸を変えての値を上限
値とする。また修正決定係数および修正相関係数Rは自由度調
整済みの決定係数と相関係数とする。
3）回帰分析の結果
前項で記した回帰分析の結果を次表の表2に整理した。これらは
2月24日と3月13日のテクスチャー特性値一様性・エントロピー・相関・
コンテストの各角度（0° 〜 45° 〜 90° 〜 135° ）について、上述
した4つの関数の係数a・bと上限値K、修正決定係数および修
表2 テクスチャ特徴量の変化に対する回帰分析の結果

<table>
<thead>
<tr>
<th>テクスチャ特徴量</th>
<th>2月13日</th>
<th>修正指数曲線</th>
<th>成長段階</th>
<th>3月13日</th>
<th>修正指数曲線</th>
<th>成長段階</th>
</tr>
</thead>
<tbody>
<tr>
<td>層厚</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>色調</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>シアー</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>逆彫り</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>切削</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>彫刻</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>色彩</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>重ね小物</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>傾斜</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>粘り</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>彫刻</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>切削</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>彫刻</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>色彩</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>重ね小物</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>傾斜</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
<tr>
<td>粘り</td>
<td>1/16θ</td>
<td>0.999</td>
<td>1.008</td>
<td>0.967</td>
<td>1.014</td>
<td>0.999</td>
</tr>
</tbody>
</table>

表中の縦線は成長段階の以下を示している

正規相関係数を算出し、その結果について比較検討した。
表2からテクスチャの一様性は、2月24日の <0°> から
<15°> まですべてで修正指数曲線の適度が最も高く、これらの傾向は読み取れない。エントロピーは、2月24日および3月13日の <0°> から
<15°> まですべてで指数曲線の適度が最も高く、傾向は読み取れない。表2の結果を2月24日の <0°> から
<15°> まですべてで修正指数曲線の適度が最も高く、それ以外の回帰曲線やロジスティック曲線の適度との差は小さく、傾向近似の強い傾向は読み取れない。また <0°> の修正指数曲線の適度（修正決定係数 R^2=0.1340、修正相関係数 R=0.3661、および
<90°> の指数曲線の適度（修正決定係数 R^2=0.3886、修正相関係数 R=0.6234）の値は低く、関数が近似すると判断できない。さらに、3月13日、
<0°> で修正指数曲線、
<45°> <15°> でロジスティック曲線の適度が最も高く、直線および指数曲線と比較してこれらの関数の適度は高い傾向となっている。コントラストは、2月24日および3月13日の <0°> から
<15°> まですべてで指数曲線の適度が最も高く、傾向は読み取れない。図表の関係による傾向は、2月24日は相関 <0°> の場合の指数関数を除き、テクスチャ特徴量で角度の違いによる関数の適度にばらつきを見られないことに対して、3月13日はテクスチャの一様性で相関分析結果による関数の適度にばらつきが見られた。この原因として、時間などの環境条件の微妙な変動が影響するため、その確認は得られない。

以上の結果をまとめると、視覚によるテクスチャ特徴量の変化は、指数関数もしくは修正指数関数に適合するものが多く、これら適度の値は概ね高い。この理由から、指関数形の変化の傾向があると考えられる。しかし、上述のような近似に対するばらつきや適度の低い部分もあり、関数近似についてはさらに詳細な検討が必要である。

6. 研究の考察 - テクスチャ特徴量と視認テスト結果との比較

今まで検討してきたテクスチャ特徴量は、デジタル画像の濃度分布に対する統計傾向を示したものであり、人間の視覚の及ぼす影響や、知覚距離をベースにした人間の識別判断とは異なる問題である10). このためこれらを単純に比較することはできないが、視距離にともなう建築物の視覚の傾向について多角的な観点から検討することは意味深いことではない。そこでここでは既往の識別尺度の研究などにおける建築物の視認テストの結果を整理し、テクスチャ特徴量の変化の様子と比較考察する。

1) 既往研究における視認テストの内容

「1-2. 研究の位置づけ」で述べたように、建築や景観要素を視認対象とした視認テストを実施し、視距離による見え方の変化を調べて識別尺度の研究がある。例えば上野 他4名（1966）21)は東京タワーを視認段として、約20kmの範囲で建築及び景観要素の変化を20名以上の被験者に観察させ、視距離の変化に対応した見え方やその特徴について調査を行っている。観察条件は1965年9月

116
～11月の快晴日を経て。このうち図10は視距離と壁面構成要素の見方が図示したものをある。
一方、張他4名（1995）は、外壁面の構造要素、開口部の凹凸、パルコニー、門扉などのタイプ・位置による高層建築6棟のファサードを視対象として、それぞれの外壁面の構造要素を抽出し、被験者5名を選定して撮影し、これらの見方の変化について詳細に観察している。このうち図11はパルコニーを有したものの壁面に凹凸があるもの・凹凸がないもの3種類の高層建築の視距離と壁面構成要素の見方の変化を図10で用いた距離スケールに合わせて図示し直したものである。
2）視認テストの結果
上野・他の調査からは200mでは家屋やタイルパターンなどの壁面仕上げが識別でき、500〜1000mではサッシなど壁面の詳細な構成要素を識別することができる。さらに3000〜4000mでは窓や壁面の違いが識別でき、これ以上では判別しやすくなることが分かる。また張・他の調査からは、100mまでに第「ディテール」としては家屋や壁面が識別でき、1000〜10000mまでに「ファサード」として壁面構成や壁面の凹凸やへこみなどが識別できる。さらに10000m以上からは「ランドスケープ」として壁面構造が合体（表面の模様）や全体のシルエット（スカイライン、輪郭）として識別できるよう結論づけている。
3）テクスチャー特徴量と視認テスト結果の比較
前項で述べた2つの視認テストからは、100〜2000mまでの視距離ではテクスチャーが、またおよそ1000m以上では壁面の主要な構造要素が識別でき、これらを立体的にとらえていることが分かる。さらにそれ以上では壁面を表面模様として知覚し、視距離の増大とともにこれが次第に判別しやすくなっていくことが把握できる。一方、本研究の建築壁面画像のテクスチャー特徴量は構・快晴の観察条件で、およそ1500mまでの間で同時観測生起行列に基づいた各特徴量が急激に変化し、それ以降は徐々に一定値に近づいていくことや、それらの変化は主として指数関数的に変化していくことが分かった。
以上の結果から、視距離を除した建築壁面の見方がは、壁面構成要素が詳細かつ立体的に見える距離帯と、壁面全体が模様的に見える距離帯に大きく区分できることまた、前者での見え方が変換は急であるのに対し、後者の見え方が変換は遅くで次第に背景と済然一体となっていくことがテクスチャー特徴量の変化の傾向からも説明できる。図11の下部にはこの傾向を示した。
7．研究の結論
本研究で実施した建築壁面画像に対するテクスチャー解析は、従来の視認テストなどによる見え方の変化を、ある程度具体的な推移のうえとして説明したり、景観現象を計量的に推定するのに役立つと考えられる。また、都市景観のフォトリアリスティックな表現を描写について検討する場合、テクスチャー特徴量が視距離との関係で描画精度を判定したり、テクスチャーの用途で決定することの判断基準となり得ると考えられる。
しかしながら、本文で述べた通り、テクスチャー特徴量は環境条件、風環境条件、さらに撮影条件により測定値が変動するものである。また視対象の関連によっても値の変動があることが充分推察される。そこで各特徴量の変動の定義を比較した上で、その絶対値について考察を加える場合には、これらの値の条件を可能な限り一定としておく必要がある。本研究では視対象を固定して日変、視距離条件での環境を変えて、視距離に応じたテクスチャー特徴量の変化の様子を検討したが、今後は上述した様々な変動要素とこれに対する特徴量の絶対値や値の変動の関係についてさらに詳細に検討していく必要があると思われる。
注释

1）画像処理の分野では、デジタル画像の濃度とストリートグラムや同時度の関数を用いた統計量で、画像の濃度分布の特徴を記述している。このような統計量をテクスチャ特徴量と呼んでいる。

2）上野宏他4名：発表属性の研究1，日本建築学会論文報告集号外，p.500，昭和41年

3）坂本充他4名：距離による高層建築ファサードの見え方の変化に関する研究，日本建築学会計画系論文集 No.488，pp.143-149，1995

4）松尾整，藤田洋：視覚法によるファサードの特性に関する研究，ファサードの研究，日本建築学会計画系論文集 No.479，pp.139-147，1996

5）奥俊信，高橋泰雄：形態分解法による都市ファサードの特徴分析，第27回日本都市計画学会学術研究論文集，pp.733-738，1992

6）亀井栄治，月尾喜男：スカイラインのゆらぎとその快速性に関する研究，日本建築学会計画系論文報告集 No.432，pp.105-111，1992

7）藤谷正洋，大野隆正，篠田隆：テクスチャの視覚に関する研究1，接待告示，pp.71-79，1979，先駆的な成果として、テクスチャの視覚に関する一連の研究がある。

8）本研究では従来型の光学式カメラを利用し、フィルムスキャナーにて建築風景等のデジタル化を行った。ただし近年はデジタルカメラが飛躍的に普及しており、光学式カメラを利用した場合、デジタルカメラを利用した場合の、研究結果の比較などが必要と考えられる。これについては、例えば建築外観画像の色彩分析において、ネガ・ポジフィルムやデジタルカメラなどの撮影方法の相違による色要素（赤R・緑G・青B）の階調値と現実の輝度を比較した研究として、中村芳樹他：建築外観色彩のシミュレーションに関する研究，日本建築学会論文報告集 No.494，pp.71-79，1997，がある。

9）Koschieder (1982) により示された視覚式として、以下のような関係式がある。これはあら距離での物体の輝度は、背景の空の輝度に指数関数的に近づいていくことを示している。

\[L = (L_b - L_0) \exp(-\alpha x) + L_b \]

\[L_b: \text{ある距離での物体輝度, } L_0: \text{近距離での物体輝度, } L: \text{背景輝度, } \alpha: \text{減衰係数, } x: \text{視距離} \]

10）人間の視点は中心視と周辺視では10倍ほどの視力の差が生じることがすでに分かっている。さらに視覚テストで行われる検視による中心視の視対象は、通常解像度のデジタル画像と比べてもよく見えていることが実証されている。ただし人間の視点および見えの判断には個人差があるため、視対象や観察条件の違いを含めてこれらの研究成果を考慮していく必要がある。

11）坂本充他4名：距離による高層建築ファサードの見え方の変化に関する研究，日本建築学会計画系論文集 No.488，pp.143-149，1995，

146頁の図1に記されている3種類の建物の壁面構成要素の見え方の調査結果を、本文図12の距離スケールを与える形で筆者が示した。

参考文献

1）谷口康治編 他9名：画像処理工学 基礎編，共立出版，1996

2）米松真一，山田恒尚：画像処理工学（メカトロニクス教科書シリーズ）9，コロナ社，2000

3）舟久保健：視覚パターンの処理と認識，啓学出版，1990

4）田村秀行 他7名：コンピュータ画像処理入門，総合出版，1985

5）太田正次，藤原正次：実地応用のための気象観測機器，地人書館，1963

6）川上光男 他4名：岩波講座認識科学3，視覚と聴覚，岩波書店，1996

7）松田隆夫：視知覚，培風館，1996

（2002年5月9日原稿受理，2003年1月9日採用決定）