重み付け係数を用いた建物のライフサイクル影響評価に関する検討
その2 アンケートによる重み付け係数と外部コストの調査

Study on Life Cycle Impact Assessment for Buildings Using Category-Weighting Factors

Part 2 Survey of category-weighting factors and external cost using questionnaire

鈴木道哉*, 秋元孝之**
Michiya Suzuki and Takashi Akimoto

1. はじめに
建築物のライフサイクルアセスメント（LCA）は、現在、エネルギー消費量や二酸化炭素排出量、NOx、SOxなど環境に対する負荷のあるライフサイクルインベントリ分析（LCI）が主流として行われている。LCIでは、LCIを行った後、ライフサイクル影響評価（LCIA）を施し、最終的には、LCIAの目的に添った結果の解釈を行わなければならない。LCIAとは、インベントリ分析の結果を受けて、潜在的な環境への影響度を評価するものであり、分類化、特性化、統合化（正規化、重み付けを含む）に分類される。ISO14022では構成要素は必須要素と付加的要素に区分されている。必須要素はLCIの結果から分類化、特性化が含まれる。正規化、重み付けは付加的要素として扱われている。統合指標を導くための重み付けの方法は、大別して、環境負荷を着眼点とするか、あるいは環境影響を元に考えられるかに分けられる。さらに手法として、代用指標を用いる方法、代替法（環境負荷の除去技術を資源価値に変換するなど）、あるいは目標値を用いる方法、有識者などの意思を反映させたパネルによる方法などが挙げられる。パネルによる方法とは、その地域などの社会が重要と考えている各環境影響分野の重要度をアンケート調査などをによって決定する方法であり、日本では、永田らによるアンケート調査が知られている。アンケートや専門家のパネルにより重要度を決定する方法であるため、誰を対象とするかにより結果が異なる場合があり得るが、この反面、対象者の意見を反映する結果が得やすいなどの特徴がある。建物は、一般製品と異なり、建設地に固定されるという特徴がある。従って、これらのLCIを行うためには、当該地域の住民の意見を反映させた評価手法が、今後、必要になる場合もあると考えられた。前報では、建物のLCIにおける住民の意識を反映させた統合化手法開発のために、永田ら行ったアンケート調査による重要度決定の方法を踏襲し、予備的調査として構想した会社、学生に対してアンケート調査を実施した。その結果から異種の環境負荷項目に対する統合化の段階で用いるカテゴリー重要度を提案し、それに判別基準に関する意思を調査した。

本稿では、前報と同様のアンケート調査の対象を拡大し、大都市としての東京（23区）民、地方中核都市としての市田原市民に対して行い、居住地属性による意識の違いの有無を考察と共に、新たにCVM手法を試行し、環境価値を金銭置換で行うための予備的検討を行い、この結果も報告する。

2. 環境評価手法とCVM
価値が存在しない環境の価値を評価する手法には、現実選好法（revealed preferences）と表明選好法（stated preferences）があ

* 滋水建設技術研究所 博士（工学）
** 関東学院大学工学部 助教授・博士（工学）

Institute of Technology, Shimu Corp., Dr. Eng.
Assoc. Prof., Kanto-Gakuin University, Dr. Eng.

Keywords: Life Cycle Assessment, Life Cycle Impact Assessment, category-weighting factors
ライフサイクルアセスメント，ライフサイクル影響評価，カテゴリー重み付け係数

A building produces huge amount of environmental load during its life cycle, including building component manufacture stage, construction stage, occupation stage, and demolition stage. In the future, we have to decrease this total environmental load amount to realize the sustainable society. For Life Cycle Assessment of building, it is in common to do quantitative analysis (inventory analysis) of load against environment. Followed by inventory analysis, Life Cycle Impact Assessment will be carried out. In this study, we have carried out a survey with questionnaire to predict category-weighting factors that is needed at aggregation stage of Life Cycle Impact Assessment for buildings. Furthermore, Contingent Valuation Method (CVM) is introduced in the questionnaire to have the negative social value of constructing and operating buildings in the city.

Keywords: Life Cycle Assessment, Life Cycle Impact Assessment, category-weighting factors
ライフサイクルアセスメント，ライフサイクル影響評価，カテゴリー重み付け係数
図1 調査用紙内容
り、前者は人々の経済行動から間接的に環境価値を評価する手法、後者は人々の環境価値を尋ねることで直接評価する手法である。選示選好法は、旅行費用をもとに反転型梁値を評価する「トライブルコスト法」、賃金や地代をもとに地域アンケート等の価値を評価する「ベッドタイプ法」があり、示示選好法には、回答者に支払い意願額（WTP: Willingness To Pay）や補償受容額（WTA: Willingness To Accept compensation）を尋ねて評価する「CV」、多属性の評価手法である「コンジョイント分析」が含まれる。これらのうちCVMはアンケートなどで仮想的な環境改善や環境破壊など、環境変化を回答者に示し、に対する支払い意願額や補償受容額を尋ねることで環境価値を評価する手法である。海外では1980年代からCVに関する研究が始まり、1990年代前半には、米国アラスカでした発生したダナーの原油流出事故の損害評価や、森林伐採制限による生態系保護と林業従事者の失業対策費用評価が実施された。政策への適用の実施例がある。近年この手法が全世界で注目を集めている。わが国では1990年代に入ってから研究が始まり、鋼製風屋や尾尾島の生態系評価、ダム開発による生態系破壊評価が実施されている。

CVMの問題点としては、質問方法やサンプルに問題があるとアンケートの回答結果にバイアスが生じ、結果の信頼性が低下するということがあげられる。これを解決するために様々な質問形式が考案されている。自由回答方法（open-ended）では、価格の存在しない環境財に支払い意願額を決定するという回答方式に回答者が慣れていないために、無回答や非常に高い金額、低い金額が多く現われるとされている。付値ゲーム方式（bidding game）では、最初に提示した金額によって回答者の支払い意願額が影響を受ける可能性があるとされ、支払カード方法（payment card）では、提示した金額の範囲が回答者の影響を及ぼす可能性がある（範囲バイアス）。二項選択方法（ dichotomous choice）は、開始点バイアスや範囲バイアス、戦略バイアスも存在しないとするが、しばしばyesの回答が多くなる傾向（受容バイアス）が指摘されている。本調査では基本的には自由回答方式を採用したが上位値を提示する方法を採用している（後述）。

3. アンケート調査概要
(1) アンケート調査内容・解答者属性概要
前報でのアンケート調査の対象は、建設、設計、不動産関連企業の従業員、および建築または環境関連の学部生（4年生）と大学院生であった。本稿での調査は、大都市部を含む東京都市圏（32区内）、地方中核都市として小田原市を選びそれぞれ電話帳を基にした無作為抽出によるアンケート郵送方式での調査実施を行った。回答者が18歳以上、東京都に送付した調査票内容を図1に示す。小田原市に配置した内容も地名記載箇所を除き同一内容である。調査においては、出身地、居住年数、性別、年齢、職業、自宅から最寄り駅までの交通手段と時間、世帯収入等を回答してもらった。
それぞれの回答者属性を表1に示す。東京都23区別の回答者は、ほぼその人口に比例した割合となった。そのうち男性18歳、女性18歳、無記名1通であった。職業は、事務系会社25通、技術系会社員32通、公務員8通、業務系30通、教員1通、学生2通、主婦3通。

小田原市の回答者は、過半数が20歳以上となっており、この原因はやる年齢の傾向があった。また、送付の部数番号登録者宛てに送付しているので世帯主である場合が多く、男性14名、女性14名、無記名1名となった。職業は、事務系会社員22通、技術系会社員25通、公務員6通、自営業28通、教員6通、学生1通、主婦7通、その他6通であった。出世栄えを見る神奈川県出身が100名以上を占めた。

表1 アンケート回答者の年齢構成

<table>
<thead>
<tr>
<th>地域</th>
<th>21〜30歳</th>
<th>31〜40歳</th>
<th>41〜50歳</th>
<th>51〜60歳</th>
<th>61歳以上</th>
</tr>
</thead>
<tbody>
<tr>
<td>東京都 (32区内)</td>
<td>4</td>
<td>17</td>
<td>41</td>
<td>95</td>
<td>0</td>
</tr>
<tr>
<td>小田原市</td>
<td>3</td>
<td>10</td>
<td>22</td>
<td>40</td>
<td>8</td>
</tr>
</tbody>
</table>

(2) 重み付け係数に関する調査結果
環境影響を分野別に評価する場合には、SETAC-Europe 1996年のインパクトカテゴリーのガイドラインが参考となる。本稿ではこれを参考にした10項目の環境影響分野について、項目間の相乗効果（重み付け係数）を導入するために順位及び配分法による回答をしてもらう。
この項目はLCA（ライフサイクル評価）である。製品・サービスを対象としたものである。しかしながらLCA国家プロジェクトで模倣物が他者製品と同じ扱われている。従って建築物のみ特別な考慮をすることなく、一般製品、サービスと同様の項目を採用することとした。項目はそのエネルギー資源消費、「鉱物資源消費」、「土地利用」、「地球温暖化」、「オゾン層破壊」、「人間への毒性」、「生態系への影響」、「大気汚染」、「酸性雨化」、「水」、「富栄養化」（水質劣化）」である。これらの項目については、環境環境を考える上で重要と思われる順位に示してもらった。順位法では各項目を重要順に順位付けをしてもらい、1位は10点、2位は9点として以下1点ずつ下げ、10位には1点と最低値を算出する。配分法では合計100点になるように各項目に振り分けて割合を算出した。結果を表2に示す。東京都、小田原市におけるそれぞれ順位法、配分法に分けて示す。また、図2に順位法、配分法に分けて、東京都、小田原市それぞれの業務、配分法にて示す。結果は合計して1.0になるように整理している。東京都、小田原市それぞれ順位法、配分法の結果を示すが、差異は見られなかった。しかし、東京都と小田原市では大気汚染の項目に関しては、小田原市が若干高い結果を得ている。

表2 重み付け係数調査結果

<table>
<thead>
<tr>
<th>項目</th>
<th>100点</th>
<th>1000点</th>
<th>0.001点</th>
<th>0.0001点</th>
</tr>
</thead>
<tbody>
<tr>
<td>東京都</td>
<td>0.990</td>
<td>0.994</td>
<td>0.009</td>
<td>0.0001</td>
</tr>
<tr>
<td>小田原市</td>
<td>0.990</td>
<td>0.994</td>
<td>0.009</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

NII-Electronic Library Service
どちらの手法でも地球温暖化がもっとも重要度が高く評価され、また物質資源消費がいずれの場合にも低い結果となった。

(3) CVR調査結果

前述の重み付け係数の調査のほか、アンケート調査では建物の外部コスト計算のため、CVRで行う調査も実施した。

具体的には、地球環境負荷が生じていない場所として既存の大小規模の公園（92,000 m²、東京23区内の約2箇所）を想定して、そこを都市開発に伴って、ビル群（延床面積1,200,000 m²規模、横浜ランドマークタワー3倍の規模）が建設されると仮定し、その計画を中止して環境を保存するために世帯が毎日いくらまで支払うことがわかるかを質問した。公園とビル群についてはイメージ写真を示した。質問は、ビルが建設されることによるエネルギー消費や資材の消費、またこれにより副次的に生じる地球環境に対する悪化要因である環境負荷について問うものであるが、公園の持つ環境保全効果の減少や公園の利用価値の減少については支払い意思の根拠に含まれないよう工夫した。工期および所要時間は3年間とし、都市開発される場所の想定を自宅から徒歩10分と徒歩30分とする2条件についての回答をしてもらった。本研究では、調査データに逐次と考慮し、自由回答式作成に用いた。ただし無回答が多くなることを防ぎ、また、必要以上の回答のばらつきを回避するため、既往のCVR調査結果から一般には支払い意思額が数万円〜1万円に千円である事を考慮して、これの値より大きい20,000円を上限とした方法とし、支払意思額の調査結果を表3-6に示す。ビル群建設計画地が自宅から徒歩10分の場合は徒歩30分の場合に対して東京の場合は、約2倍の金額が示されている。小田原の場合はこれほど著しくは約1.5倍であった。両ケースでは違いはあるものの、支払い意思額は距離によって変化する結果となった。

また、平均支払意思額は既往のCVR調査結果と比較して妥当な範囲であり、収入の0.2〜0.5%程度であることが確認できた。したがってある程度の信頼性は見込む結果と考えられる。表中には参考値として上位5%、あるいは下位10%の結果を示した数値も示しました。なお、CVMでは一部の回答から結果が散布でありある場合には、これらを除外することが効果的であると考えられる。回答者の中の平均支払意思額は、統計的に差がみられなかったが、東京と小田原への調査の結果、出身地が都内である人の回答に比べてそれ以外の地域での回答の方はやや低くなる傾向がみられた。

表5-6は徒歩10分、30分の範囲面積と、東京23区及び小田原市の平均等価価額より算出した範囲内世帯数を表3-4の結果にそれぞれ乗えて算出した3年間の全世代合計金額を示す。ただし徒歩30分の範囲は徒歩30分半面積から徒歩10分の面積を含めたものとした。

また、ここでの東京15区を80とした。表5-6に条件別の調査範囲面積と世帯数をもとに算出したこの結果より、徒歩10分よりも徒歩30分の合計額の方が高いことがわかる。これは範囲の面積が徒歩10分よりも徒歩30分の方が小さいためである。よってこの結果より、調査範囲を広げると1世帯の支払意思額は低下するが、合計金額は高くなることがわかる。

4. 環境影響分野へのWTP割付と建物の外部コスト計算

表5-8に環境影響分野項目ごとの重み付け係数とCVMから得られたWTPと対象範囲層と世帯数から計算される住世帯数を乗じて求められる環境影響分野別総支払額を示す。

さらにアンケートで記載した再開発によって新たに建設されると仮定した延床面積（1,200,000m²）で除してさらに半に算出した引退面積1年あたりの支払額算定式を示し、表5は順位の決定の結果により表したのであり、表8は配分法の結果により表したものをである。順位法、配分法での違いは前述のように既存であるといえども、重み付け係数で割り付けたWTPが、全額、地球温暖保全のための支払い意思額とみなして、これを各影響分野の重要度（重み付け係数で除算）で分配した結果とみなせる。

またさらに延床面積を除して一年あたりの算定値は、建物の負の影響を地域の人々からのアンケート結果をもとに金額換算（外部コスト換算）として導き出したものとみなすことが可能と思われる。つまり地域住民の意見を反映させた建物の外部コストの算出を試みたことと解釈できる。

但し、本検討は未だ試行段階であり、様々な検討課題が残されていていると思われる。

これらの上には、公園の利用価値が確実に分離されているか否か（手法による誤差の検討、WTPが環境影響分野に割り付けた金額が本調査で見られるように大都市と地方都市ではかなりの金額的な差があるか否か）をそのまま受け入れてよいかなどの課題も含まれる。
表7 各環境影響分野に割り付けたWTP総額と
開発床面積当りのWTP試算（順位法）

<table>
<thead>
<tr>
<th>環境影響分野</th>
<th>対象地域</th>
<th>重み付け係数（％）</th>
<th>重複割合関係式で計算されたWTP（百万円）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.エネルギー資源消費</td>
<td>東京都</td>
<td>9.4</td>
<td>628</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>9.0</td>
<td>214</td>
</tr>
<tr>
<td>2.鉱物資源消費</td>
<td>東京都</td>
<td>4.5</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>4.7</td>
<td>113</td>
</tr>
<tr>
<td>3.土地利用</td>
<td>東京都</td>
<td>6.3</td>
<td>421</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>6.0</td>
<td>147</td>
</tr>
<tr>
<td>4.地球温暖化</td>
<td>東京都</td>
<td>14.0</td>
<td>956</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>14.0</td>
<td>354</td>
</tr>
<tr>
<td>5.オゾン層破壊</td>
<td>東京都</td>
<td>13.0</td>
<td>922</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>12.9</td>
<td>326</td>
</tr>
<tr>
<td>6.人間への毒性</td>
<td>東京都</td>
<td>12.9</td>
<td>789</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>11.9</td>
<td>284</td>
</tr>
<tr>
<td>7.生態系への影響</td>
<td>東京都</td>
<td>10.4</td>
<td>695</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>9.7</td>
<td>246</td>
</tr>
<tr>
<td>8.大気汚染</td>
<td>東京都</td>
<td>13.4</td>
<td>896</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>14.1</td>
<td>335</td>
</tr>
<tr>
<td>9.酸性化</td>
<td>東京都</td>
<td>9.5</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>9.8</td>
<td>253</td>
</tr>
<tr>
<td>10.富栄養化</td>
<td>東京都</td>
<td>6.5</td>
<td>434</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>6.5</td>
<td>155</td>
</tr>
<tr>
<td>合計</td>
<td>東京都</td>
<td>100.0</td>
<td>6,683</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>100.0</td>
<td>2,383</td>
</tr>
</tbody>
</table>

表8 各環境影響分野に割り付けたWTP総額と
開発床面積当りのWTP試算（配分法）

<table>
<thead>
<tr>
<th>環境影響分野</th>
<th>対象地域</th>
<th>重み付け係数（％）</th>
<th>重複割合関係式で計算されたWTP（百万円）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.エネルギー資源消費</td>
<td>東京都</td>
<td>9.4</td>
<td>628</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>9.0</td>
<td>214</td>
</tr>
<tr>
<td>2.鉱物資源消費</td>
<td>東京都</td>
<td>4.5</td>
<td>501</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>4.7</td>
<td>113</td>
</tr>
<tr>
<td>3.土地利用</td>
<td>東京都</td>
<td>6.3</td>
<td>421</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>6.0</td>
<td>147</td>
</tr>
<tr>
<td>4.地球温暖化</td>
<td>東京都</td>
<td>14.0</td>
<td>956</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>14.0</td>
<td>354</td>
</tr>
<tr>
<td>5.オゾン層破壊</td>
<td>東京都</td>
<td>13.0</td>
<td>922</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>12.9</td>
<td>326</td>
</tr>
<tr>
<td>6.人間への毒性</td>
<td>東京都</td>
<td>12.9</td>
<td>789</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>11.9</td>
<td>284</td>
</tr>
<tr>
<td>7.生態系への影響</td>
<td>東京都</td>
<td>10.4</td>
<td>695</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>9.7</td>
<td>246</td>
</tr>
<tr>
<td>8.大気汚染</td>
<td>東京都</td>
<td>13.4</td>
<td>896</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>14.1</td>
<td>335</td>
</tr>
<tr>
<td>9.酸性化</td>
<td>東京都</td>
<td>9.5</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>9.8</td>
<td>253</td>
</tr>
<tr>
<td>10.富栄養化</td>
<td>東京都</td>
<td>6.5</td>
<td>434</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>6.5</td>
<td>155</td>
</tr>
<tr>
<td>合計</td>
<td>東京都</td>
<td>100.0</td>
<td>6,683</td>
</tr>
<tr>
<td></td>
<td>小田原市</td>
<td>100.0</td>
<td>2,383</td>
</tr>
</tbody>
</table>

5. 公園の環境保全効果・利用価値に関する考察
5.1 本調査で得られた支払意思額は、調査の意図を反してその根拠として公園の持つ環境保全効果の減少や公園の利用価値の減少についての影響が含まれている可能性が示唆されている。これも明らかに排除することは重要な課題である。自宅からの距離と支払意思額との関係を図式化すると図3のようになると仮定される。なお図3のWTPは東京都の調査から得られた数値を示している。公園のある場所、即ち都市開発される場所と自宅との距離が延長するにつれて、支払意思額に含まれる公園の環境保全効果や利用価値に関する影響が減少する。ビル群建設状況が自宅から徒歩10分の距離という想定条件では公園の環境保全効果や利用価値に関する影響が支払意思額の内に含まれる割合が多いと推測され、徒歩30分の距離という想定条件では住民がアクセスすることが容易でなくなるためその割合が減少し無視できるという仮説が成立する可能性がある。この場合、図4に示すように徒歩30分の範囲内世帯のすべてが、徒歩30分の距離を想定した平均支払意思額を提供する計算により、総体的に都市開発に伴うビル群設立に伴う公のエネルギーおよび資源の消費、及び環境負荷を示すことができる。なお表4の世帯数は東京都の世帯数を示している。今後、これらの要素の分析も含めて詳細に検討を行っていく必要があると考えられる。

6. おわりに
6.1 建物を建設・運用することによる環境の外部コストは、本来、実際には支払が生じていない（内部コストとなっている）が、環境影響を考えると、社会的にはどこかでコスト負担が間接的になされることになるものであり、科学的に原因から影響をすべて特定できれば合目的な算出方法が確立されると要する。しかしこのような手法は現在検討が進まれているものの、完全に知見が得られているとは言いがたい。このようなアプローチが考えられる一方、地域社
会の価値観を何らかの形で反映させて直接、外部コストの参考となる値を求めるような簡便な手法も必要と考えられました。本報告では、建物の環境影向影響における変動の有無が影響を及ぼすため、市場価格の存在が環境価値を貨幣価値によって表すことができるCV手法を用いて実験し、CVMと重複付けを併用した環境影響分析の各変動の支払意価を試算しました。さらに、試算した支払意価額と建築物を関連付けることにより、建築物の単位延床面積当たりの外部コストの評価を行なった。

CVMと重複付けを併用した手法を検討した結果、建物において環境影響を項目ごとに金額で示すことができる評価方法としての確立には未だ至っていないが、今後の課題を残す形でこの手法開発の可能性が確立できたと考える。

この手法は事業の方向性を決定する目的に用いることが考えられ、環境を考慮した方向性を考慮するため、環境影響に関する項目ごとに重複付けを行えばその項目に重複を伴うことができる。項目ごとの相対的な金額が示されれば環境に対して配慮するために投入する金額との比較検討をすることができる。また、設計に対する設計の変更を伴う場合には、社会的なコンセンサスが必要となる。

平均支払意価額は収入の0.2～0.5%程度であることが確認でき、既往の調査との比較により、今回の調査では過大または過小評価の可能性は低いと考えられ、しかしこの調査では支払額上限値を設定しているためこのパラメータが無視しうるほど小さいことを確認する必要がある。

本研究で採用した手法は環境に関する価値観をアンケート調査により明らかにしていくものであるため、あまり狭い地域・街区内に限定していくことが困難である。本研究では地域の中で、既存のものに同じような環境価値をもたらすよう環境価値をベースとした地域内でばらばらと見られる価値観を基にしたアンケート調査を行った。このような前提で、本アンケート結果は、他の地域とは異なる地域では直接適用できないことを考えられる。

公園の持つ環境保護効果の減少は公園の利用価値の減少についての影響を明らかにするための仮説を前提としたが、この仮説が明確である。

なお、この調査は他者のもの、この手法が示す結果は金額表示であるため、一般的にもかかわらず定められた利点がある。研究はそれにとどまらず、本手稿の手法を実用化させるためには調査を進め、より高い信頼性を確保する必要がある。

【引用文献・参考文献】
1) JIS Q 14040 環境管理システム環境アセスメント評価手順及び枠組、財団法人日本規格協会、1997
2) JIS Q 14041 環境マネジメントシステム環境アセスメント指針及び評価指針の設定及びイベント分析、財団法人日本規格協会、1999
3) ISO 14042 Environmental management-Life cycle assessment -Life cycle impact assessment, 2000
4) 松山善也も、日本におけるライフサイクルアセスメント統合指針の開発、日本エネルギー学会誌、第77巻12号, 1998
5) 横田健也も、ライフサイクルアセスメント（LCA）の最近の動向、日本エネルギー学会誌、第77巻第10号, 1998
6) 木下美恵さ、LCAにおけるライフサイクルアセスメント手法の開発（その1～6）、日本環境学会第2～7回環境工学シンポジウム'95～'97講演論文集、1995～1997
7) 東山千一、公共事業と環境計画CVMガイドブック、新価値。1997
8) 萩原、篠原、竹内、環境評価ワークショップ評価手法の現状、新価値。1998
9) 萩原浩一、環境の価値と評価手法CVMによる経済評価、北海道大学図書館学会、1999
10) T.W.マンシューハイ・枝条調査法の実用、同書、1999
12) 鈴木、秋元、重複付けを用いた建物のライフサイクルアセスメント影響評価に関する検討、日本建築学会計画系論文集、第549号、2001
13) 萩原、秋元、建築ライフサイクルアセスメントの効果に関する検討、事務所建物のライフサイクルアセスメントの試験、日本建築学会大会学術講演会議案、2001.09
14) 秋元孝之、鈴木道隆、建築のライフサイクルアセスメント手法に関する検討（その1, 2）、日本建築学会大会学術講演会議案、2000.09
15) 秋元孝之、鈴木道隆、建築のライフサイクルアセスメント手法に関する検討、第4回エコバランス国際会議議案、2000.10

【本研究に関する既発表論文】
1) 内田、飯田、錦、秋元、建物の環境影響における重複付け係数を用いた仮想評価法（CVM）に関する研究、その2 評価手法の検討、日本建築学会大会学術講演会議案、2002

（2003年8月27日最終受付、2003年11月11日採用決定）

— 86 —