建築材料の熱伝導率試験における測定の不確かさ評価
AN ESTIMATION OF THE UNCERTAINTY OF MEASUREMENT ON THERMAL INSULATION TEST

西村 宏昭*, 小南 和也**, 小川 杏***
Hiroaki NISHIMURA, Kazuya KOMINAMI and Kaori KOBAYAKAWA

In general, no measurement or test is performed perfectly, and the imperfections in the process will give rise to error in the result. Consequently, the result of a measurement is only an approximation to the true value of the measurand, which is the specific quantity subjected to measurement. A test result is only complete when the measurand value is accompanied by a statement of the uncertainty. Uncertainty is defined as the parameter, associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand. In this study, an estimation of the uncertainty of measurement in the thermal insulation test on a high-density glass wool board is described.

Keywords: Uncertainty of measurement, Error, ISO/IEC 17025, GUM, Thermal insulation test

測定の不確かさ，誤差，ISO/IEC 17025, GUM, 熱伝導率試験

1. はじめに

試験は被検材料の性能を特定する技術的手段で，正確で信頼できる試験結果は広く社会の安全や物の基盤をなし。技術的能あり，
公平・公正である試験所を認定する制度として，わが国では JINLA
(工業標準法試験事業者認定制度), ASRITE (製品評価技術基盤
機構認定制度)および MLAP (特定計量証明事業者認定制度)など
があり，これらにより認定された試験所の報告書は一般消費者に	
って信頼できるものとなる。さらに，国際的な認定機関間の相互承
認(MRA)によって，認定試験所の試験報告書は関係海外強制法規等
に受け入れられ，世界中の市場で通用する，いわゆる One-stop-testing
が実現する。

試験所認定は，ISO/IEC 170253) (JIS Q 17025) 「試験所及び校正機
関の能力に関する一般的条件事項」に基づいて審査がなされる。
ISO/IEC 17025 では，試験の品質システム，技術的能力，試験施設・
測定機器などについて試験事業者の管理・維持すべき事項が要求さ
れており，その中の一つに「測定の不確かさ」の算出と表現に関す
る項目がある。不確かさは，誤差に代わる新しい概念で，試験結果
のばらつきを表現し試験結果の信頼性を保証する重要な指標である。
（測定の）不確かさの定義は，「測定の結果に伴う，合理的に測
定量に結び付かれる値のばらつきを特微するパラメータ」と
とされる。つまり，不確かさは測定値のばらつきの定量的表現で,
誤差が測定値と真値との偏差で定義されていたのに対し，不確かさ
は，測定値（または誤差）のばらつきの分布を表している。不確かさ
の評価については 1980 年に国際度量衡委員会(CIPM)が不確かさ
の表現に関する勧告を提案している。これをもとに詳細なガイドラ
ンクが国際標準化機構(ISO)を中心とした国際的な 7 機関で作成さ
れ，「測定における不確かさの表現のガイド 3) (GUM) として 1993
年にまとめられ，1995 年に一部の修正が施されて発行されている。
GUM は統計をもとに不確かさを評価する方法を提案しているが，
いくつかの定義のもと成り立っている。その主な仮定は測定の不
確かさの成分が標準偏差で表現でき，それらを合成して測定値の
の不確かさを表現できるというものである。不確かさの成分の評価
は統計的な方法（タイプ A の方法と呼ばれる），あるいは統計によ
らないその他の方法（タイプ B の方法と呼ばれる）のいずれによっ
ても良好，これらの結果は区別されずに合成できるとしている。そ
の点において，測定の不確かさは純粋な計量学的特性値とは言えな
いかかもしれないが，実用的，包括的であると言えよう。
GUM の手順は次にまとめることができる。
(1) 関数モデルの構築
(2) すべての不確かさ要因の抽出

* 関西設計総合試験所建築物理部
** 関西設計総合試験所建築物理部

General Building Research Corporation, Building Physics Dept., Dr. Eng. General Building Research Corporation, Building Physics Dept.
(3) それぞれの不確かさ成分のタイプ A またはタイプ B の方法による標準不確かさの計算
(4) 感度係数の計算
(5) 合成標準不確かさと、適切な場合、有効自由度の計算
(6) 拡張不確かさの計算

測定の不確かさは校正および試験の領域のみならず、基礎研究までの広い分野での測定値に適用される。校正においては、すべての証明書に測定の不確かさを記載しなければならないが、試験の場合、用いる試験方法によって、測定の不確かさが明らかに予測される範囲にあるとすることでは、必ずしも測定の不確かさの表記を要しない。これは ISO/IEC 17025, 5.4.6.2, Note2 の「多くの認められた試験方法が測定の不確かさの主要な要因の値に限界を定め、計算結果の表示形式を規定している場合には、試験所はその試験方法及び報告方法の指示について、測定の不確かさの推定とその適用の要件に係る事項を満たす」と定められたものである。ある試験方法でこの要件を満たすとき、試験所は測定の不確かさを表記しなくても、測定値は有効数字などの表記の範囲で信頼できることが試験結果のユーザーにとって暗黙の合意としている。したがって、当該 Note2 の要件を形式上満たしている試験方法であっても、測定値の有効数字等に係わる精度よりも実際の測定の不確かさが大きい場合には当該 Note2 の要件を満たすべきである。このことから、ある試験方法が測定の不確かさを考慮し期待される精度として結果の有効数字を規定しているか否かを表面上区別できない現状において、当該 Note2 の適用を困難にしていよう。

本報では、GUM に基づく測定の不確かさの一般的評価方法について述べ、JISA1412-1-1999 による熱伝導率試験における測定の不確かさ評価例を報告し、当該 JIS が ISO/IEC 17025, 5.4.6.2, Note2 の要件を満たすかどうかの検証を行う。測定の不確かさについての詳細は GUM の他著者の文献 14-19 に参考された。なお、本報は既発表論文 14-19 に著者によるものである。

注）不確かさの値に注目して、標準偏差と同等に扱うことのできる量の意味を明確にする場合には「標準不確かさ」と記されるが、この点を明確にしない場合には単に「不確かさ」と記されることが多い。

2. 用語の定義

本論の中で用いる一般計測用語は、国際計量基本用語集 2(VIM) と略称し、次のように定義されている。

真の値：ある特定の定義と一致する値。測定値：測定の対象である特定の量。
測定の正しさ：測定の結果と測定値の真の値との間の一致の程度。
繰り返し性：同じ測定条件下で同一の測定値を連続した場合の、測定結果の間の一致の程度。
測定の不確かさ：測定の結果を考慮した、測定値と真の値との差の大きさ。

3. 測定の不確かさの評価方法

GUM に基づく測定の不確かさの評価法は以下のようになる。

一般に、試験では測定値(measurand) の N 個の独立な値 X の関数で数値的に式(1)で表わされることが多い。

\[Y = f(X_1, X_2, \ldots, X_N) \]

(1) ここで、X の値は推定値で N の値は測定値の推定値を示す平均値を用いて式(2)で表わされる。

\[Y = \frac{1}{N} \sum_{i=1}^{N} X_i \]

(2) X の合成分不確かさ u(x) は式(3)に示す合成成分 u(x) の平方根で表わされる。

\[u^2(y) = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial X_i} \right)^2 u^2(X_i) \]

(3) 式(3)は一般に、「不確かさの伝播則」と呼ばれる。偏微分 \(\frac{\partial f}{\partial X_i} \) は X のときの相関関数 c_{ij} として知られる（重複値係数と呼ばれることも多い）。u(x) はすべて測定値の不確かさである。

式(3)では不確かな独立であるが、入力値間で相関をもつ場合の測定結果の合成不確かさは式(4)で表わされる。

\[u^2(y) = \sum_{i=1}^{N} u_i^2 + 2 \sum_{i<j}^N c_{ij} u_i u_j \]

(4) ここで、u(x) は推定値で、相関関数 c(x,x') を用いて式(5)で表わされる。

\[u(x) = \sqrt{\sum_{i=1}^{N} c_{ii} u_i^2 + 2 \sum_{i<j}^N c_{ij} u_i u_j} \]

(5)

式(5)における不確かな相関関数 c(x,x') を推定値や感度関数を用いて式(6)で表わされる。

\[u(x) = \sqrt{\sum_{i=1}^{N} c_{ii} u_i^2 + 2 \sum_{i<j}^N c_{ij} u_i u_j} \]

(6)

不確かな成分の標準不確かさ u(x) はタイプ A またはタイプ B のいずれかで評価される。タイプ A は統計的で評価される方法で、タイプ B は統計的手法によらない他の方法で不確かさを評価する方法である。タイプ A またはタイプ B の評価の相関分布は単純に有効的であり、いずれも相関分布に基づいて推定される標準不確かさ u(x) を用いて、式(3)（または式(4)）で合成することができる。タイプ A 評価の例として、同一条件での n 個の独立した観測から決定される入力量 X の期待を考えると、X の平均値は、

\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

(7) また x の標準不確かさ u(x) は式(8)のサンプル平均の標準偏差で表わされる。

\[u(x) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} u_i \]

(8)
建築部材の熱伝導率の測定方法はJIS A 1412-1:1999、「熟絶縁材の熟抵抗及び熟伝導率の測定方法—第1節：保護熱板法（GHP法）」に規定されている。当JISでは、試験体の数によって1枚法と2枚法があるが、ここでは試験体1枚法を採用し、試験手順の概要を示す。

試験の測定システムを図1に示す。恒温槽の中で、加熱板（主熱板+保護熱板）と冷却熱板の間に試験体を装着し、試験体の両面温度を10〜20Kに保つ。この際、加熱板の裏側に逆流防止熱板を、また側方に保護熱板によって、加熱板の中の主熱板に加える電力により発生した熱が全て試験体のみを通じて飛ぶように、それぞれの電力を調整する。熱的平衡状態になったことを確認して、そのときの供給電力と試験体両側の温度差を測定する。

図1熱伝導率試験装置の概要

4.2 数式モデルと不確かさの推定

熱伝導率τは式(12)で定義される。
\[\lambda = \frac{\Phi d}{A \Delta T} \quad \text{[W/m·K]} \]

ここで、\(\lambda \); 熱伝導率 [W/m·K]
\(\Phi \); 主熱板に供給される平均電力 [W]
\(d \); 試験体の平均厚さ [m]
\(A \); 伝熱面積 [m²]
\(\Delta T \); 試験体の両面温度差 [K]

それらの成分について、不確かさの要因であり、これらの関係を示す不確かさの特性要因図を図2に示す。

熱伝導率は4つの測定値から、それぞれの成分の感度係数を式(13)で表される。

\[c \Phi = \frac{\delta \Phi}{\delta A} = \frac{d}{A \Delta T} \]
\[c d = \frac{\delta d}{\delta \Phi} = \frac{\Phi}{A \Delta T} \]
\[c A = \frac{\delta A}{\delta \Phi} = \frac{\Phi d}{A^2 \Delta T} \]
\[c \Delta T = \frac{\delta \Delta T}{\delta \Phi} = -\frac{\Phi d}{A^2 \Delta T^2} \]

熱伝導率測定の不確かさは、不確かさの伝播則を用いて、それぞれの成分数値の平方根として式(14)で表される。

\[u(\lambda) = \sqrt{c \Phi^2 u(\Phi)^2 + c d^2 u(d)^2 + c A^2 u(A)^2 + c \Delta T^2 u(\Delta T)^2} \]

ここで、\(u(\lambda) \); 製造標準不確かさ
\(u(\Phi) \); 主熱板に供給される平均電力測定の不確かさ
\(u(d) \); 試験体の厚さ測定の不確かさ
\(u(A) \); 伝熱面積測定の不確かさ
\(u(\Delta T) \); 試験体の両面温度差測定の不確かさ

すなわち、4つの成分の測定値から感度係数を求め、またそれぞれの成分の不確かさを評価できれば、式(14)で熱伝導率測定の不確かさが計算できる。

4.3 不確かさ成分の評価

それぞれの成分についても、不確かさに影響する複数の要因がある。それぞれの要因を取り上げるかどうか、またそれらをどのように見積もるかを考えるのかは研究専門の作業である。なお、取り上げる要因の間で測定値に相関がある場合には相関性を考慮して不確かさを評価する必要がある。

(1) 主熱板に供給される平均電力測定の不確かさ; \(u(\Phi) \)

電力測定の不確かさは\(u(\Phi) \)の要因として、電力測定器の校正の不確かさ、電力測定器の繰返しによる不確かさ、電力の読みの不確かさ\(u(\Phi_{\text{m}}) \)及び主熱板の熱非平衡による熱損失の不確かさ\(u(\Phi_{\text{m}}) \)を考慮する。繰返しによる不確かさとは繰返し観測によって評価される不確かさで、偶然誤差に相当する。読みの不確かさは平均の誤差で、有限の分解能によって生じる不確かさである。

電力測定器の校正の不確かさは校正証明書に記載されている（タイプB評価）。繰返しによる不確かさは、試験体のセットを含め20回の繰返し観測から得られた実験標準偏差とした（タイプA評価、式(8)による）。読みの値は測定器の最小目盛り\(a \pm 1/2 \)を限界値とした範囲に一様に分布すると仮定できる。ある確率分布関数の分散\(\sigma^2 \)は正規化確率分布関数の積分から式(15)で得ることができる。

\[\sigma^2 = \int f(x) dx \]

したがって、統計的な仮定から読みの不確かさは、

\[u(\Phi_{m}) = \frac{a}{2} \sqrt{5} \]

熱非平衡による熱損失の不確かさは、逆流防止隔板への熱損失\(Q_{\text{m}} \)、ギャップの非平衡\(Q_{\text{m}} \)及び壁面での熱損失\(Q_{\text{m}} \)を評価した。

これらの3つの成分の変化が熱損失の変化に寄与する割合、すなわち
ち、感度係数は数学モデルで表されないので実験的に求めた。感度係数を実験的に求める場合においても、偏微分の定義から、それぞれの成分について注目する入力の微小な変更を与え、その入力は一定に保って、注目する成分の変化を測定することが求められる。測定結果を図3に示す（図では同時期に測定した3つの建築材料の結果が示されている）。測定結果は測定条件の制限で決定される各成分の変化の範囲で、自然に求めたと考え、表1に示す標準不確定を求めた。

<table>
<thead>
<tr>
<th>成分</th>
<th>感度係数 (\frac{\text{m}}{\text{W}})</th>
<th>標準不確定 (\sigma_{\text{u}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{\text{tot}})</td>
<td>0.0564</td>
<td>±0.1K</td>
</tr>
<tr>
<td>(Q_{\text{watt}})</td>
<td>0.000562/\mu V</td>
<td>±0.1 \mu V</td>
</tr>
<tr>
<td>(Q_{\text{imp}})</td>
<td>0.00342/\mu K</td>
<td>±0.10197 W</td>
</tr>
<tr>
<td>(Q_{\text{watt}})</td>
<td>0.00500 W</td>
<td></td>
</tr>
</tbody>
</table>

各不確定成分を合成して求めた電力測定の不確定を表2に示す。

<table>
<thead>
<tr>
<th>成分</th>
<th>標準不確定 (\sigma_{\text{u}})</th>
<th>タイプ</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi_{\text{tot}})</td>
<td>1.43×10^4\W</td>
<td>1.29×10^4\W</td>
<td>B</td>
</tr>
<tr>
<td>(\Phi_{\text{imp}})</td>
<td>5.27×10^2\W</td>
<td>B</td>
<td>A(n=20)</td>
</tr>
<tr>
<td>(\Phi_{\text{imp}})</td>
<td>2.89×10^2\W</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>(u(\Phi))</td>
<td>5.00×10^3\W</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

電力測定の不確定成分に対する各不確定成分のうち、感度係数の寄与が大部分であることがわかる。実際、測定の不確定は、測定方法による不確定、読みの不確定は無視できるほどに小さい。このことから、感度係数の精度や読取の分解能を必要以上に向上しても、感度係数の不確定は小さくならず、結果的に熱伝導率測定の不確定は小さくならないと言える。

(2) 試験体の厚さ測定の不確定： \(u(d) \)
試験体の厚さ測定にはノギスを用いたが、その測定の不確定 \(u(d) \) には、ノギスの校正の不確定で \(u(d_0) \)、厚さ測定の繰返しによる不確定で \(u(d_w) \)、読みの不確定で \(u(d_m) \) を評価した。厚さ測定の繰返し回数は \(n=20 \) とし、厚さ測定の不確定を表3に示す。

<table>
<thead>
<tr>
<th>成分</th>
<th>標準不確定 (\sigma_{\text{u}})</th>
<th>タイプ</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{\text{tot}})</td>
<td>2.89×10^5\m</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>(d_{\text{watt}})</td>
<td>2.51×10^5\m</td>
<td>A(n=20)</td>
<td></td>
</tr>
<tr>
<td>(d_{\text{watt}})</td>
<td>1.44×10^5\m</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>(u(d))</td>
<td>4.09×10^5\m</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

(3) 伝熱面積測定の不確定： \(u(A) \)
伝熱面積測定の不確定 \(u(A) \) は、この測定に用いるノギスの校正の不確定で \(u(A_0) \) 、繰返し測定による不確定 \(u(A_m) \) 、読みの不確定で \(u(A_{\text{m}}) \) 、温度変化による不確定 \(u(A_{\text{m}}) \) の要因を評価した。評価結果を表4に示す。

<table>
<thead>
<tr>
<th>成分</th>
<th>標準不確定 (\sigma_{\text{u}})</th>
<th>タイプ</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{\text{tot}})</td>
<td>2.89×10^5\m</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>(A_{\text{watt}})</td>
<td>1.97×10^5\m</td>
<td>A(n=20)</td>
<td></td>
</tr>
<tr>
<td>(A_{\text{watt}})</td>
<td>1.44×10^5\m</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>(A_{\text{watt}})</td>
<td>1.65×10^5\m</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>(u(A))</td>
<td>4.13×10^5\m</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

伝熱面積は同じノギスを用いた2辺の長さ測定値の積であるから、不確定の合成には完全相関を仮定し、式(5)を用いて \(A=2L \times u(A) \) とする。\(L \) は主熱板の有効長さ(0.150m, 20℃時)である。長さの変動の不確定は、主熱板の熱膨張数で測定範囲の温度変化を乗じて、その範囲で一様に分布すると仮定した。

(4) 試験体の両面温度差測定の不確定： \(u(A) \)
試験体両面温度差測定の不確定 \(u(A) \) は、両面の温度測定の不確定で \(u(A) \) が等しいと考え、 \(u(A)=\sqrt{2} u(T) \) とする。温度測定の不確定は温度測定器の校正の不確定で \(u(T) \) 、繰返し \(n=15 \) 回による不確定で \(u(T_m) \) 、読みの不確定で \(u(T_{\text{m}}) \) を合成し、表5に示す。

<table>
<thead>
<tr>
<th>成分</th>
<th>標準不確定 (\sigma_{\text{u}})</th>
<th>タイプ</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{tot}})</td>
<td>1.00×10^5K</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>(T_{\text{watt}})</td>
<td>2.50×10^5K</td>
<td>A(n=15)</td>
<td></td>
</tr>
<tr>
<td>(T_{\text{watt}})</td>
<td>2.89×10^5K</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>(u(T))</td>
<td>3.95×10^5K</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>(u(A))</td>
<td>5.58×10^5K</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

4.4 熱伝導率測定の不確定の算出
以上の不確定成分の評価から、熱伝導率測定の不確定 \(\sigma_{\text{u}} \) が評価できる。グラウスウェル板の熱伝導率試験において、電力供給量 \(\Phi \) = 0.536W、試験体厚さ \(d=0.0244m \)、伝熱面積 \(A=0.0225m^2 \)、温度差 \(A=15.1K \) の測定値を用いて、熱伝導率が \(\lambda=0.0385 W/m\cdot K \) であったとき、測定の不確定は表6のように評価する。

<table>
<thead>
<tr>
<th>成分</th>
<th>標準不確定 (\sigma_{\text{u}})</th>
<th>タイプ</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi)</td>
<td>5.00×10^5W</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>4.09×10^5m</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>(A)</td>
<td>1.24×10^5m</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>(\lambda)</td>
<td>5.58×10^5K</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>(\lambda)</td>
<td>0.000328W/m\cdot K</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

ここで、包含係数がk=2として熱伝導率 \(\lambda \) を評価し、先に述べたように、包含係数は合成標準不確定 \(\sigma_{\text{u}} \) の確率分布に基づく信頼の水準から決定されるべきである。APLACでは「包含係数k=2」は変動に用いるべきではなく、95%信頼の水準に基づいて適切に決定されなければならないとしている。ここで求めたグラウスウェル板の熱伝導率測定の不確かさ評価ではタイプBで評価される成分
の寄与が比較的大きく、その場合、合成標準不確かさ \(u(x) \) の分布が正規分布とは異なることは容易に想像できる。

多くの不確かさ成分からなる合成不確かさの分布は複雑で、中心極限定理の適用によってその分布を近似的な正規分布にみなし、95%信頼の水準に基づく包含係数を \(k=2 \) とするのが実際的なであるが、式(10)と式(11)を用いて包含係数を確認する。ただし、機器の校正に伴う不確かさの自由度は、この算出に基づく情報が明らかでない場合があるとし、通常よく行わされるように、無限大とする。

タイプ B の不確かさ評価の自由度を与える式(11)は「不確かさの不確かさ評価」である。今、\(\alpha_{(x)} \) の値が約 10%以内であるとする（タイプ B の不確かさの信頼度は主観的に決めざるを得ない）と、それは相対不確かさが 0.10 であることを意味するので、式(11)から、

\[
\nu = \left(\frac{0.10}{2} \right)^2 = 50
\]

が導かれる。電力密度抑制の制御条件が一様分布で実現されているとして成分の相対不確かさを実数的に求めたが、これらが確定的であるならば \(\nu = \infty \) とできる。ここでは得られた不確かな値は約 90%で信頼できる（相対不確かな値の 10%）として上記の値を従用することにする。

電力測定の不確かな有効自由度は式(10)を用いて、

\[
\nu(x) = \left[\frac{1.43 \times 10^{-4}}{5.27 \times 10^{-4}} + \frac{5.00 \times 10^{-4}}{19} \right]^{0.5} = 50
\]

が得られる。電力密度抑制の制御条件が一様分布で実現されているとして成分の相対不確かさを実数的に求めたが、これらが確定的であるならば \(\nu = \infty \) とできる。ここでは得られた不確かな値は約 90%で信頼できる（相対不確かな値の 10%）として上記の値を従用することにする。

熱伝導率測定の不確かな評価の有効自由度は式(10)と式(11)を用いて、

\[
\nu(x) = \left[\frac{0.89 \times 10^{-4}}{50} + \frac{0.42 \times 10^{-4}}{133} + \frac{0.21 \times 10^{-4}}{367} + \frac{0.36 \times 10^{-4}}{87} \right]^{0.5} = 70
\]

スチュードントの1分布では信頼の水準を 95%とすると、自由度 70 に対応する \(\nu \) の値は 1.994 で、この場合、拡張不確かさは、

\[
U = ku_{(x)} = 1.994 \times 0.000392 (W/mK)
\]

となり、\(k=2 \) と決めて評価した拡張不確かな値と大差ない結果となる。実際、建築材料分野では、製品の特性のばらつきが大きいため、このような詳細な検討を Excell で拡張不確かな値を求める必要性は小さいと考えられる。しかし、包含係数をいつも \(k=2 \) と決めておくことが正しい評価であるとは限らない。特に少ない回数および試験で評価された不確かな値が卓越して測定値の合成不確かなも寄与する場合には注意が必要である。

4.5 JIS の規定から見積もられる不確かさ

JIS A 1412-I: 1999 に規定されている各成分の精度とこれから見積もられる相対不確かさを表 7 に示す。当該 JIS では、精度 \(a \) は測定値 \(x \) に対する比率で表されている。測定値は \(\pm 2 \sigma \) の範囲内にかかる値を許容されている。したがって、測定値はこの範囲内で一様に分布すると考えてよいので、各成分の相対不確かさは \(u_{(x)} = a \sqrt{3} \) で表される。

表 7 JIS の測定条件から見積もられる相対不確かさ

<table>
<thead>
<tr>
<th>成分</th>
<th>規定精度 (%)</th>
<th>相対不確かさ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>主熱板の平均電力測定</td>
<td>0.2</td>
<td>(u_{(x)} = 0.115)</td>
</tr>
<tr>
<td>非平衡及び端面熱損失</td>
<td>0.5</td>
<td>(u_{(x)} = 0.289)</td>
</tr>
<tr>
<td>試験体の厚さ測定</td>
<td>0.5</td>
<td>(u_{(x)} = 0.289)</td>
</tr>
<tr>
<td>伝熱面積測定</td>
<td>0.5</td>
<td>(u_{(x)} = 0.289)</td>
</tr>
<tr>
<td>試験体表面温度差測定</td>
<td>1.0</td>
<td>(u_{(x)} = 0.577)</td>
</tr>
</tbody>
</table>

熱伝導率測定の相対合成不確かさはこれらの自乗和平方根で求められ、\(u_{(x)} / x = 0.773% \) で、この値は測定値に関わらず一定である。

4.6 運び測定による測定値のぼろつき

高密度グラスウール板の熱伝導率の同一条件下における運び測定結果を図 4 に示す。運び回数は 20 回とし、その都度、試験体の装置へのセットを行った。試験体の平均温度は 19.6～20.3℃、温度差は 14.2～15.6K であった。測定値の平均値は \(x = 0.0383 W/mK \)，実験標準偏差は 0.000344 W/mK であった。

図 4 熱伝導率(W/mK)

5. 考察

JIS A 1412-I に規定されている測定条件（各成分の測定精度）から見積もられる合成標準不確かさを MU1、実際に行われている測定条件から GUM に基づいて見積もられる合成標準不確かさを MU2、及び熟伝導率測定値の評価基準精度を MU3 と表し、これらの比較を図 5 に示す。三者はほぼ等しく、GUM に基づく不確かさの評価が妥当であることを示している。

図 5 相対合成標準不確かさの比較
JIS A 1412:1 では、結果の表示を「各伝熱特性値は有効数字 2 けたで表示する。試験体の温度差、厚さ、熱流量（供給電力）等を有効数字 3 けたで測定できた場合は 3 けたで表示してもよい。」としている。有効数字が 2 けたであるためには、測定の不確かさは有効数字の最小桁より小さくなければならず、この場合拡張不確かさが 1%以下である必要がある。ところが、見積もりされた標準不確かさに包含係数 t の絶対量を乗じて拡張不確かさに変換すると約 2%になり、有効数字の最小桁より大きい不確かさを見込むなければならない。したがって、ISO/IEC 17025, 5.4.6.2, Note2 の要件を満たさなければならない。

測定値を表示する際には、評価された測定の不確かさを付記する必要がある。なお、測定結果を有効数字 3 けたで表示するために測定条件をさらに厳密に管理する必要があるが、各成分の測定値を有効数字 3 けたで測定すること、それらを合成して得られる測定値の不確かさが有効数字 3 けたで表されることとは意味が異なることに注意しなければならない。

6. 結論
測定の不確かさは測定結果の信頼性を保証するための重要な尺度で、校正及び試験の測定結果に測定の不確かさを付記する要求がトレーサビリティ制度及び試験所認定制度によって国際的に合意されている。測定の不確かさは基礎研究分野にまで普及し、国際的な学術論文に不確かさの表記が増えると予想される。測定の不確かさの評価と表現方法については GUM に基づくことが基本とされてい

本報告では、JIS A 1412:1：建築材料の熱伝導率測定を含む、GUM に基づく測定の不確かさの評価を行い、得られた評価結果を当該 JIS に記載の測定条件の制限から観点かされる不確かさ及び熱伝導率の実験標準偏差と比較を行った。

三者の評価値の実験および基準値の比較を行い、GUM による不確かさの評価方法が妥当であることがわかった。ただし、当該 JIS に記載されている測定条件が守られたとしても、結果の表現に要求される有効数字は評価された測定の不確かさの標準偏差相当値を含むのであるので、国際的合意されている、より高い水準での信頼性を確保できているとは言いがたい。

したがって、当該 JIS は ISO/IEC 17025, 5.4.6.2, Note2 の要件を満たさないので、測定結果を報告する際には測定の不確かさの評価値を付記することが必要となる。

謝辞
本報告は、経済産業省から独立行政法人製品評価技術基盤機構へ委託された平成 14 年度試験事業認定事業委託費（認定試験事業者等の一技術情報提供に係る調査研究等）に係る調査研究事業の一部再委託「建築材料分野（建築建材の熱伝導率試験）における不確かさに関する調査研究委員会, 委員長井木修一京大教授」の成果をまとめたものである。関係者のご協力に感謝申し上げます。

参考文献
1) ISO/IEC 17025: General Requirements for the Competence of Testing and Calibration Laboratories, 1999
2) ISO: International Vocabulary of Basic and General Terms in Metrology; VIM, 2nd, 1993
4) ILAC/GUI/1: Introducing the Concept of Uncertainty of Measurement in testing in Association with the Application of the Standard ISO/IEC 17025, 2001
6) UKAS, M303: The Expression of Uncertainty and Confidence in Measurement, 1997
8) NIST, TN1297: Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, 1994

(2003年10月8日原稿受理, 2004年7月1日採用決定)