有効換気容積の定義と2次元CFD解析による算定例
室内換気特性の評価指標としての有効換気容積の定義と算定法（第1報）

DEFINITION OF EFFECTIVE VENTILATED VOLUME IN ROOMS AND 2-D CASE STUDIES BY CFD SIMULATIONS
Definition and evaluation method of effective ventilated volume in rooms (Part 1)

近藤靖史*, 阿部有希子**, 長澤康弘***
Yasushi KONDO, Yukiko ABE and Yasuhiro NAGASAWA

Keywords: Effective Ventilated Volume, CFD, Ventilation Efficiency Index
有効換気容積，数値流体解析，換気効率指標

1 序
近年のシックハウス症候群の問題に対して，室内の空気質向上が大きな課題となっており，2003年には改定建築基準法が施行された。地球温暖化対策の一環としてより一層の省エネルギーが必要となっている。したがって，効率よく換気を行い，十分な良好な室内空気質を維持することが重要である。すなわち，換気が効率的になされているかを評価し，適切な換気計画を行う必要があり，このためにいくつかの換気効率指標が提案されている。本報では，「室容積のうち，有効に換気がなされている領域の容積」を意味する指標として「有効換気容積」を定義し，この定義を検討する。はじめに，重み関数を乗じた空間積分による有効換気容積の定義式を検討し，この定義式に基づいた有効換気容積の算定方法を提案する。次に，単純な2次元モデルを用いて，CFD解析による有効換気容積の算定例を示す。また本報において，3次元オフリス空間モデルを用いて，各部の空間換気方式に対する有効換気容積を求める，それぞれ換気特性の特徴を有効換気容積で捉えられることを示す。

記号表

<table>
<thead>
<tr>
<th>記号</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_e</td>
<td>本報において定義する有効換気容積 [m3]</td>
</tr>
<tr>
<td>f_e</td>
<td>有効換気容積を導く際の重み関数</td>
</tr>
<tr>
<td>ν</td>
<td>室の容積 [m3]</td>
</tr>
<tr>
<td>τ_a</td>
<td>空気余寿命 [s]</td>
</tr>
<tr>
<td>τ_c</td>
<td>空気寿命 [s]</td>
</tr>
<tr>
<td>τ_s</td>
<td>名目換気時間 [s]</td>
</tr>
<tr>
<td>τ_{aw}</td>
<td>無次元空気余寿命</td>
</tr>
<tr>
<td>τ'_w</td>
<td>無次元空気余寿命</td>
</tr>
<tr>
<td>V</td>
<td>室内空間を離散化した場合の離散化要素に対する有効換気容積 [m3]</td>
</tr>
<tr>
<td>V'_e</td>
<td>室内空間を離散化した場合の離散化要素に対する有効換気容積 [m3]</td>
</tr>
<tr>
<td>V_{aw}</td>
<td>無次元空気余寿命</td>
</tr>
<tr>
<td>$C(x,t)$</td>
<td>室内のトレスガス濃度（SHASE-S 116-2003 における定義） [m3/m2]</td>
</tr>
<tr>
<td>$C'(t)$</td>
<td>排気口でのトレスガス濃度（SHASE-S 116-2003 における定義） [m3/m2]</td>
</tr>
</tbody>
</table>

本論文は，日本建築学会環境学研究委員会（2003年）および気調と衛生学研究委員会環境学研究対委員会（2003年）において発表した内容をもとに作成したものである。

* 武蔵工業大学工学部建築学科 教授・博士（工学）
** 宮崎県産業大学工学部建築学科 教授・博士（工学）
*** 岐阜歯科学大学工学部建築学科 教授・博士（工学）

Prof., Department of Architecture, Faculty of Eng., Musashi Institute of Technology, Dr. Eng.
Microbase Inc.
Research Assoc., Department of Architecture, Faculty of Eng., Kagoshima University, Dr. Eng.
2 重み関数による有効換気容積の定義
2.1 有効な容積の一般的な定式化

室の内での「有効な容積」\(V_{ef}\)を算定する一般的な方法として、何らかの重み関数 \(f_e\)を導入し、空間積分により求める方法が考えられる。すなわち、次式で表される。

\[V_{ef} = \int f_e \cdot dV \]

(1)

どのような視点で「有効な容積」を考えているかによって、(1)式中の重み関数 \(f_e\)の与え方は異なる。例えば、室温が25℃〜27℃に制限されている領域を有効に空気換えていると考え、この容積を算定したい場合は、重み関数は室温の関数となり、25℃〜27℃の值を持ち、これ以外では0.0となるステップ状の関数を考えれば良い。

本報では、(1)式に基づいた有効換気容積の定義について検討する。すなわち、どのような視点によって「有効な容積」を考えているかを明確にし、また、どのような重み関数を用いるべきか検討する。

2.2 有効換気容積の定義と定義式

本研究では、有効換気容積 \(V_{ef}\)を「空気換えのうち、有効に換気がなされている領域」を定義する。ここで、「有効に換気がなされている」とは、「完全混合状態を維持した空間の換気がなされていない」ことを意味するものとする。また、有効換気容積 \(V_{ef}\)は(1)式で定義されるものと考え、「完全混合状態を維持した空間の換気」を具体的に表すために、(1)式に現れる重み関数 \(f_e\)の3章で検討する。

一方、本報で示す有効換気容積と同様な主観に基づく換気効率指標の一つとして、西澤・絵内らが「有効換気容積」を提案しているが、これについては定義が他にも存在し、算定の方法や利用方法に様々な解釈があるため、付録において整理した。

3 有効換気容積を求める際の重み関数
3.1 重み関数の考え方

(1)式に現れる重み関数 \(f_e\)をどのように与えるかによって、\(V_{ef}\)は様々存在する。その中から考え方が明確であり、また算定法が簡便である重み関数を用いる方が望ましい。そこで、本研究では換気効率を表す最も代表的な指標であり、概念が判りやすい「無次元空気換え効率」 \(\tau_e\)、空気余命 \(\tau_p\)、空気寿命 \(\tau_i\)を変数として重み関数を表現することを検討する。また、これらの重み関数はCFD解析などをより比較的容易に求められることが重要であると考えられる。さらに、各種換気時間 \(\tau_e\)で無次元化した空気換え効率 \(\tau_e\)は、常時換気の室内流れが与えられると一意に求まるものであり、取り扱いが容易となる。

3.2 重み関数の関数形

まず、各種換気時間 \(\tau_e\)で無次元化した無次元空気換え効率 \(\tau_e\)による重み関数 \(f_e\)を表現する方法を考える。無次元空気換え効率 \(\tau_e\)は次式である。

\[V_{ef} = \int f_e \cdot dV \]

ただし、\(V_{ef}\)は下記である。

(1) 重み関数①の場合

\[\tau_e = 1.0 \quad \text{のとき} \quad V_{ef} = 0.0 \quad \text{とする。} \]

(2) 重み関数②の場合

\[\tau_e = 1.0 \quad \text{のとき} \quad V_{ef} = 0.0 \quad \text{とする。} \]

(3) 重み関数③の場合

\[V_{ef} = (1/\tau_e) \cdot V \quad \text{とする。} \]

\[\tau_e = \tau_0 / \tau_r \]

(2)

表1 有効換気容積の算出法(空気換えに基づく場合)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

(3-3)式中の \(a, b \)は \(a = b \)のときの重み関数を示す。上記の関数を図1に示す。1式の空間積分を図2に示す無次元空気換え効率の関数分布に図1の重み関数をかけたものである。すなわち、空気を換気し、CFD解析などにより各揮発化率変数の局所空気換えが得られれば、単純な集計により1式の算定は可能である。また、上記の3種類の重み関数では暗に説明するように有効換気容積の考え方が異なる。

(1) 重み関数①による有効換気容積(図1(a))

無次元空気換え効率 \(\tau_e \)以下の領域では完全混合状態と同じように空気の外へ排出が早くなり、十分に換気がなされていると考えられる。重みは1.0として積分する。一方、無次元空気換え効率 \(\tau_e \)より大い領域の容積は有効換気容積に加えない。すなわち、その領域の空気換え効率が完全混合状態の空気換え率以下となる領域のみを有効換気容積と見なす考え方である。無次元空気換え効率 \(\tau_e \)より大きい領域では有効換気容積に全く含まれない点が後述する重み関数②や③による有効換気容積と異なり、有効換気容積を小さく見積もることとなる。例えば、空気質の許容値が厳密に保たれており、これを満たすための空気換え効率を完全混合状態の空気換え率以下に保つ必要がある場合などへの適用を考える。事務室空間などの一般的な室内空気環境を厳密に評価する場合への適用を考えられるが、むしろ労働環境などで空気質の許容レベルに対する安全率が小さく、この許容レベルを超える健康への影響がすぐに現れる場合や、許容粉じんレベルが厳密に求められているクリーンルームなどに、この考え方を適用することができると考えられる。
(2) 重み関数による有効換気容積（図1(b)）

無次元空気値が1.0以下の領域では完全混合状態と同等以上に供給空気の到達が早く、十分に換気がなされていると考えられるので、重み関数は1.0として積分する。無次元空気値が1.0より大きい領域の容積は無次元空気値の逆数を重み関数として空間容積を求める。例えば無次元空気値が2.0の領域では容積の2分の1を有効換気容積に加えることになるが、重み関数は動作の重み関数と後述の重み関数αを組み合わせたものと考えることもできる。すなわち、無次元空気値が1.0以下の領域で重み関数で、1.0より大きい領域では重み関数で確保する。

容積は無次元空気値の逆数を重み関数として空間容積を求める。

(3) 重み関数による有効換気容積（図1(c)）

空間全領域について無次元空気値の逆数を重み関数として空間容積を求める。例えば無次元空気値が0.5の領域では容積の2倍を有効換気容積に加え、また2.0の領域では容積の2分の1を有効換気容積に加えることになる。この重み関数θによる有効換気容積は、供給空気の到達が早い領域に対して有効な換気を含め、逆に供給空気の到達が遅い領域に対しては計画的に評価をするという考え方に基づいている。この考え方は空気の流れの領域を積極的に評価する場合に適用できるものであり、この点が前述の重み関数の考え方と大きく異なる。例えば、空気流を小さくすることによって知的生産性をあげることができるというプラント側の評価を含めたい場合などに適用できる。これにより、効率を最大化するため、空気流が大きくなるか、空気流が小さくなるかを判断する際に利用できると考えられる。また、この考え方では実容積より有効換気容積の方が大きくなる場合がある。例えば、換気方法や換気システムでは有効換気容積は実容積よりも大きくなるが、特に吹出し口周囲の空気流は小さく、この領域では局所的に有効換気容積が非常に大きく評価される。したがって、重み関数を用いる場合このような吹出し口周囲を含まない居住者の空気環境の評価に限定されるなどが適当であると考えられる。これについては5章および次章で検討することに経済性と機能性を考慮して評価する。

以上では、空気流(r)にて有効換気容積について検討したが、空気余命(r)、空気寿命(r)についても同様に考えることができる。まず、無次元空気余命(r')、無次元空気寿命(r')を考える。

\[
\begin{align*}
\tau_r &= \tau / \tau_s \\
\tau_p &= \tau / 2 \tau_s
\end{align*}
\]

(4), (5)式でそれぞれ完全混合状態での空気余命(r)と空気寿命(r)を基準に無次元化している。また、(3-1)-(3-3)式に示す重み関数が同様に考えられるが、それぞれが持つ意味は異なる。すなわち、各領域の空気の排出口から排出される余命などに検討したい場合は空気流の空気が排出される余命などが有効な場合がある。また、供給空気の換気時間が問題となる場合は空気流の空気が有効な換気容積を算出することが有効な場合があると考えられる。ただし、一般的には空気流による有効換気容積の算出結果が利用しやすい場合が多いと考えられる。

4 CFD解析に基づく有効換気容積の算出法（表1）

空気流の空間分布は測定やCFD解析により求められるが、本報ではCFD解体の結果に基づいた有効換気容積の算出法を示す。空間をN個の要素（格子）に離散化する。この各要素での空気流が

--- 31 ---

NII-Electronic Library Service
5.2 計算結果(図4、図5、表3)

気流分布、無次元空気温度、無次元空気余命および無次元空気寿命の分布を図4に示す。また、無次元空気余命の頻度分布を図5に示す。これらの結果に基づいて表1に示す方法で有効換気容積を算出した結果を表3に示す。

(1) 空気余命に基づく有効換気容積

Case 1では、吹出し口と吸込み口間のショートサーキットが観察され、図4(b)に示すように空間断面は無次元空気温度が小さいが、この領域以外は無次元空気温度が大きい。この結果、重み関数を用いた計算による有効換気容積の値は実容積の2.3%であった。すなわち、空間断面の約10%の領域がビストンフロー的な流れ場を形成し、この領域では無次元空気温度が100%より小さく、残りの約90%の領域では無次元空気温度が1.0を超える。このような状況は図5(a)に示す無次元空気温度の頻度分布からも理解できる。一方、重み関数2で評価した場合においては有効換気容積の値は実容積の26.9%であり、重み関数1で評価した場合に比べ、約3倍となった。

これは無次元空気温度が1.0よりも大きい領域の容積を(3-2)式で評価し、有効換気容積に加えたためである。また、重み関数3で評価した場合、有効換気容積の値は実容積の15.6%であり、実容積よりも大きい。これは吹出し口近傍で局所的な有効換気容積(V̇')を非常に大きく評価するためである。

Case 1は大空洞での局所換気が単純化したものと想定することもできる。例えば、局所的な制御を意識する場合には、その制御すべき領域を設定し、その領域内での有効換気容積を評価することも可能と考えられる。Case 1で空間の下から10%の領域(図3(a)のグレーの領域)に着目し、有効換気容積を重み関数2により算定すると100%であった。このように検討すべき領域を限定した上で有効換気容積を算出し、局所換気が有効にされているかどうかを検討することができると考えられる。このような例についての具体的な検討は次報で示す予定である。

Case 2についても吹出し口と吸込み口間のショートサーキットが観察されたが、その程度はCase 1ほどではない。また、図5(b)に示す無次元空気温度の頻度分布からも理解できる。このため、重み関数1や重み関数2で評価した有効換気容積はやや小さくなり、Case 1の約1.7倍である。また、重み関数3により評価した有効換気容積は19%であり、実容積の約2倍となった。
表3 2次元室モデルにおける有効換気容積の算定結果(カッコ内の数値は実容積（m^3）に対する比率)

<table>
<thead>
<tr>
<th>解析ケース</th>
<th>重み関数</th>
<th>Case1</th>
<th>Case2</th>
</tr>
</thead>
<tbody>
<tr>
<td>空気断面に基づく有効換気容積</td>
<td>重み関数①</td>
<td>0.74[m^3]</td>
<td>12.48[m^3]</td>
</tr>
<tr>
<td></td>
<td>重み関数②</td>
<td>(9.3%)</td>
<td>(16.5%)</td>
</tr>
<tr>
<td></td>
<td>重み関数③</td>
<td>1.32[m^3]</td>
<td>(45.8%)</td>
</tr>
<tr>
<td></td>
<td>重み関数④</td>
<td>3.66[m^3]</td>
<td>(199%)</td>
</tr>
<tr>
<td></td>
<td>重み関数⑤</td>
<td>15.92[m^3]</td>
<td></td>
</tr>
<tr>
<td>有効換気容積</td>
<td>重み関数①</td>
<td>0.60[m^3]</td>
<td>11.36[m^3]</td>
</tr>
<tr>
<td></td>
<td>重み関数②</td>
<td>(7.5%)</td>
<td>(18.3%)</td>
</tr>
<tr>
<td></td>
<td>重み関数③</td>
<td>4.08[m^3]</td>
<td>(51.0%)</td>
</tr>
<tr>
<td></td>
<td>重み関数④</td>
<td>20.08[m^3]</td>
<td>(251%)</td>
</tr>
<tr>
<td>有効換気容積</td>
<td>重み関数①</td>
<td>0.80[m^3]</td>
<td>4.50[m^3]</td>
</tr>
<tr>
<td></td>
<td>重み関数②</td>
<td>(10.0%)</td>
<td>(19.8%)</td>
</tr>
<tr>
<td></td>
<td>重み関数③</td>
<td>3.86[m^3]</td>
<td>(48.3%)</td>
</tr>
<tr>
<td></td>
<td>重み関数④</td>
<td>5.86[m^3]</td>
<td>(73.2%)</td>
</tr>
</tbody>
</table>

図5 2次元室モデルの無次元空気容積の密度分布

(1) 有効換気容積を「容積のうち、有効に換気が実施されている領域の容積」として定義した。
(2) 有効換気容積の定義式を重み関数を導入した空間積分で示した。
(3) 重み関数は無次元空気容積の関数として与えることにより、「有効に換気が実施されている領域の容積」をより明確に示すことができる。
(4) 重み関数の関数形として、3種類の関数をとり上げ、それぞれを示す例を示した。また、無次元換気率や無次元空気壽命によっても有効換気容積を定義し得ることを示した。
(5) 2次元室モデルのCFD解析結果を用いた有効換気容積の計算例を示した。

次報において3次元オフィス空間モデルなどを対象としてCFD解析結果から有効換気容積を算出し、各種の空間・換気方式の特徴を有効換気容積により表現できることを示す予定である。

【付録】 既往の有効混合容積の定義と算定

【NII-Electronic Library Service】
「換気に関与する空間の実質的な容積（m³）。トレーサーガスが均一に混和しているゾーンの容積を意味する理論的な概念」

また、この規格では、一部の換気量測定法において有効混合容積を用いた説明がなされており、さらに測定による有効混合容積の算出方法についての解説がある。SHASE-S 116-2003 では有効混合容積を次式のように表現している。

\[V_{\text{eff}} = \int v \cdot C(x,t) \cdot dv / C(t) \] \hspace{2cm} (A-1)

ここで、\(C(x,t) \) は室内的トレーサーガス濃度、\(C(t) \) は換気口でのトレーサーガス濃度である。すなわち、(A-1)式では、容積の各領域を \(C(x,t) / C(t) \) で重み付け、これを実体で積分することにより、有効混合容積を表現していると考えることが可能である。すなわち、(A-1)式は文中(i)式で表現される「有効な容積」の考え方を含まれる。ただし、重み関数として採用した \(C(x,t) / C(t) \) 中の濃度分布（\(C(x,t) \) はトレーサーガスの発生位置などの条件に依存し、また \(C(x,t) / C(t) \) に時間変化がある場合は取り扱いが複雑となる。

このように、西澤・総内らと SHASE-S 116-2003 による視点は異なる。すなわち、西澤・総内らでは流れ気空気の拡散混合状況に着目し、有効混合容積を室内の換気効率指標として捉えてる。この考え方は気空気学に着目していると考えることができる、本研究で提案している有効換気容積の着眼点と共同する点が見られる。一方、SHASE-S 116-2003 ではトレーサーガス濃度方法などにより換気量を測定する際に、測定の初期条件としてトレーサーガスが室内で十分混合しているかどうかを示す指標として有効換気容積を捉えている。

【注意】
注 1) 基準法施行令第 20 条の (1) に「有効換気量」という用語が使われており、また、全面換気機能の発表に伴う「有効換気容量」の測定方法の規定基準が存在する。これらの「有効換気容量」と「拡散混合計算」などを基にして実験される換気系統を意味している。本報で提案される「有効換気容量」は用語で似ているが、主に適応される点が必要である。
注 2) 西澤・総内らによる有効換気容積の考え方とほぼ対応しているが、計算方法などに大きな差異がある(付随参照)。
注 3) 本報で提案した有効換気容量の計算方法は、無次元空気質量が 2.0 であり換気率に影響を及ぼす数値を導入する必要がある。無次元空気質量と換気率の関数が似ているが、測定結果の異なる場合がある。本報ではできるだけ単純に重み関数を適用することとした。このようにして得られた条件は実用的に重要であるが、重み関数 1 用いることが推奨される。
注 4) 本報で提案した有効換気容量の計算方法は、無次元空気質量が 1.0 である場合に適用される。本報では、無次元空気質量が 1.0 の場合に適用する必要がある。重み関数 1 が提案される。これにより換気容量の計算方法は無次元空気質量が 1.0 の場合に適用する必要がある。重み関数 1 が提案される。

\[V_{\text{eff}} = \int \int f(u) \cdot dv = \int \int f(u) \cdot dv = \int_{x=0}^{1} dx = \infty \]

ただし、吹出し口直近を除いた領域で重み関数 1 により評価される有効換気容量は無次元である。例えば、\(x=0.5 \) から \(x=1.0 \) の領域で重み関数 1 により評価される有効換気容量を求めると下記のように無次元的に 1.5 倍の値を持つ。

\[V_{\text{eff}} = \int_{x=0}^{1} dx = 1.5 \]

補図 ビストンフローにおける無次元空気流量

このように重み関数 1 で有効換気容量を評価する場合は吹出し口近傍を除いた領域を対象とした方が良い場合が多いと考えられる。

【参考文献】
1) 例えば、枝藤・加藤：新たな換気効率指標と三次元空気拡散計算シュミュレーションによる換気の効果、空気調和・衛生工学会論文誌、pp.986-989, 1986.10
2) 西澤・総内・羽山：有効換気容量を指標とした換気風箏の換気性について、日本建築学会技術報告集、14 号, pp.171-170, 2001.12
3) 空気調和・衛生工学会規格 SHASE-S 116-2003、トレーサーガスを用いた単位空間の換気量測定法、2003。