家庭用エアコンの実使用時における成績係数に関する研究

STUDY ON THE PERFORMANCE OF HOUSEHOLD AIR-CONDITIONER IN THE PRACTICAL USE

Results of COP on a air-conditioner at 13 detached houses

Hideki ASAMA, Shin-ichi AKABAYASHI and Jun SAKAGUCHI

This paper describes the characteristic of coefficient of performance (COP) of a household air-conditioner. We measured 13 air-conditioners installed in residences in Niigata by the simplified COP measurement technique. The results are as follows.

(1) There are big difference between the actual COP and the catalog COP. Actual COP is higher than catalog COP for a cooling, and actual COP is lower than catalog COP for a heating period.

(2) In this study, heating capacity of the air-conditioner is relatively smaller than cooling capacity.

(3) Actual COP of heating period is smaller than actual COP of cooling period.

Keywords: Household air-conditioner, Coefficient of performance, Simplicity test method

家庭用エアコン、成績係数、簡易測定法

Ⅰはじめに

経済産業省2005年エネルギー白書１により、我が国における総エネルギー消費量15,912PJ(ペタジュール)のうち、住宅部門で消費されるエネルギーの割合は、全体の13.1%、2,088PJであり、世帯数の増加や新たな家庭機器の普及等により、住宅で消費されるエネルギーは今後更に増加すると予想される。住宅で消費されるエネルギーの中で、暖房用エネルギー消費は相対的に多く、冷暖房機器の性能向上が重要であると考えられる。このため、わが国では1998年の改正されたエネルギー使用の促進に関する法律（通称：省エネ法）で、エアコンやテレビ、パソコンなどの家電機器等のエネルギー消費量の基準（トップランナー基準）を設け、機器のエネルギー消費効率の向上の推進を図っている。

家庭用エアコンの性能は、製品カタログに定められた出力時の成績係数（COP = エアコンの熱出力/消費電力）が定義されており、エアコンのCOP測定は日本工業規格（JIS C 9612およびJIS B 8615-1）に定められたカロリーメータ型空気エンドーセル装置（以下カロリーメータ）と呼ばれる大掛かりな装置が用いられ、エアコン製造者が実験室で主に定格運転時の性能を測定している。このCOPは消費電力の観点から性能を比較する際の目安となるが、家庭用のエアコンは定格出力で運転されているとは限らないため、定格出力時のCOPより家庭で消費されるエアコン電力量を推定することは困難である。本研究では筆者らが開発したCOP簡易測定システムにより、家庭用エアコンの実使用時のCOP測定を行い、家庭用エアコンの運転状況に関する基本的データをもとめたので報告する。

家庭用エアコンに関する既往の研究では、エアコンの使用状況と夏の気候についてアンケート調査を中心に行われている。例えば。柴田らによる研究3）では、兵庫県の消費者666人を対象に、2002年の夏季と冬季のアンケート調査を実施し、夏季と冬季のエアコン使用時の温熱環境に関する満足度について調査している。近年、家庭用エアコンの性能に関する研究が行われており、林ら6）により家庭用エアコンの冷房時はにおける部分負荷特性（部分負荷率＝除去効果率×定格冷房能力）と除湿性能に関する研究が行われている。この研究は家庭用エアコンの室内機を人工気象実験室内に設置し、風量モードの設定や設定温度、人工気象室内の温度変化条件を変える、エアコンの圧縮機周波数、コイル表面温度等の測定を行っている。また、エアコンの性能を計算し、数値計算により仮想室に設置されたエアコンの運転成績係数に関する研究が、林ら7）、下田ら8）により試みられている。本研究は13棟の住宅を対象に、実使用時におけるエアコンの運転状況および成績係数について着目した点が他の研究と異なる特徴である。

* 新潟大学大学院自然科学研究科 大学院生
** 新潟大学大学院自然科学研究科 教授・工博
*** 県立新潟女子短期大学生活科学科 助教授・博士(工学)

Graduate Student, Graduate School of Science and Technology, Niigata Univ.
Prof., Graduate School of Science and Technology, Niigata Univ., Dr. Eng.
Assoe. Prof., Dept. of Human Life and Environmental Science, Niigata Women's College, Dr. Eng.
2 COP簡易測定手法の概要

エアコンの熱出力は、エアコン吹出口部と吸込部の室暖空気のエントルピーの差から求めることが出来る。このため、家庭用エアコン着脱可能な吹出・吸込部の風速、吹出し口部の風量とエアコン消費電力を計測するモジュールにより、実使用時のCOPを測定する。図1にCOP簡易測定システムの構成を示す。表1に測定システムを構成する測定モジュールの仕様を示す。

なお、本報では示さないがCOP簡易測定システムはカロリーメータ試験室で冷房、暖房時の家庭用エアコンの測定結果の比較検討を行い、冷房時、暖房時ともカロリーメータによる測定結果とCOP簡易測定システムで得られるCOPの結果が良く一致していることを確認している。詳細は文献③参照のこと。

3 調査概要
3.1 対象研究
調査対象住宅の概要を表2に示す。新潟県の一戸建て住宅13戸を調査対象に夏季、冬季の家庭用エアコンの運転状況および性能に関する調査を行う。対象としたエアコンは、一般住宅の多い地域に設置されたエアコンを対象に、COP簡易測定システムを設置し、測定する。

3.2 測定方法
エアコンの機器効率を示すCOPを算出するために、COP簡易測定システムにより、エアコン吹出し口部と吸込口部の風速、風量、消費電力量、電源の温度差を計測するモジュールにより、吹出風速（住宅A～M）または吹出し口部の風量を計測する（③）。また、住宅間の吹出・吸込部に温湿度計を設置し、1分間隔で記録する。住宅Aでは室内機における吹出し口部風速を計測するモジュールにより、実使用時のCOPを測定する。図1にCOP簡易測定システムの概要を示す。表1に測定システムを構成する計測モジュールの仕様を示す。

3.3 エアコンの概要と測定期間
表3に測定を行ったエアコンの概要を示す。新潟県内に設置されているエアコン20台を対象に、住宅F、H、Jを対象に測定期間中に異なる複数台のエアコンを対象にしている。夏季（冷房）は8月に9月にかけて測定を行い、冬季（暖房）は11月から1月にかけて測定した。

4 COP測定結果
4.1 実使用時におけるCOPとカタログCOPの関係
表4、表5に各住宅の冷房時、暖房時の測定期間において実測されたCOPの平均値（以下、実COP）とカタログおよび取扱いマニュアルに記されている定格時のCOP（以下、カタログCOP）とを示す。実COP比は、実COPとカタログCOPの比であり、以下の(2)式で定義する。

\[R = \frac{C_A}{C_P} \] …(2)

C_A: エアコンの実COP[-] C_P: カタログのCOP[-] R: 実COP比[-]

部分負荷率はエアコン出力とカタログ定格出力の比であり、(3)式で定義する。

\[\text{部分負荷率} = \frac{C_A}{C_P} \] …(3)

表2 対象住宅の概要

<table>
<thead>
<tr>
<th>所在地</th>
<th>窓面積</th>
<th>構造・工法</th>
</tr>
</thead>
<tbody>
<tr>
<td>住宅A</td>
<td>新潟市</td>
<td>150m² (居住部分)</td>
</tr>
<tr>
<td>住宅B</td>
<td>新潟市</td>
<td>117.5m²</td>
</tr>
<tr>
<td>住宅C</td>
<td>新潟市</td>
<td>178.2m²</td>
</tr>
<tr>
<td>住宅D</td>
<td>新潟市</td>
<td>130.8m²</td>
</tr>
<tr>
<td>住宅E</td>
<td>新潟市</td>
<td>241.6m²</td>
</tr>
<tr>
<td>住宅F</td>
<td>新潟市</td>
<td>167.0m²</td>
</tr>
<tr>
<td>住宅G</td>
<td>新潟市</td>
<td>147.4m²</td>
</tr>
<tr>
<td>住宅H</td>
<td>新潟市</td>
<td>110.2m²</td>
</tr>
<tr>
<td>住宅I</td>
<td>新潟市</td>
<td>177.2m²</td>
</tr>
<tr>
<td>住宅J</td>
<td>東京市</td>
<td>106.0m²</td>
</tr>
<tr>
<td>住宅K</td>
<td>東京市</td>
<td>159.6m²</td>
</tr>
<tr>
<td>住宅L</td>
<td>新潟市</td>
<td>142.4m²</td>
</tr>
<tr>
<td>住宅M</td>
<td>羽市</td>
<td>130.3m²</td>
</tr>
</tbody>
</table>
のように定義する。

\[e = \frac{AQ}{P} \quad (3) \]

P：タクロログの冷暖房定格出力[kW]

e：部分負荷率[-]

冷房時の測定期間中の平均外気温度は23.5～28.5℃の範囲である。2台のエアコンを除き、実COPはタクロログCOPよりも高い値となっている。部分負荷率は0.40～1.75の範囲に入り、測定期間中は定格冷房出力よりも低い状態で動作している。図に示さないが平均外気温が0.5℃以上である。住宅Bは11月に測定を実施したため他の住宅よりも平均外気温が高くなっており、住宅Bを除き、暖房時の実COPは、タクロログCOPよりも低い値である。

暖房時の実COP比は0.35～1.47で、今回測定した暖房時の実COPの平均は0.68である。実COPとタクロログCOPの標準偏差は、実COPでは暖房時が3.63、暖房時が1.45であり、タクロログCOPは暖房時が1.08、暖房時が0.46である。図2からもわかるように、暖房時の実COPは比較的ばらつきが大きく、暖房時のタクロログCOPは比較的ばらつきが小さい結果となっている。

<table>
<thead>
<tr>
<th>注</th>
<th>冷房時の実COPとタクロログCOP</th>
</tr>
</thead>
</table>
| 仕様 | 実COP | タクロログCOP | 実COP比 | 部分負荷率 | 平均外気温度 [

<table>
<thead>
<tr>
<th>注</th>
<th>エアコンの概要と測定期間および測定期間中の平均外気温</th>
</tr>
</thead>
<tbody>
<tr>
<td>仕様</td>
<td>運転状態</td>
</tr>
<tr>
<td>住宅A</td>
<td>暖房</td>
</tr>
<tr>
<td>住宅B</td>
<td>暖房</td>
</tr>
<tr>
<td>住宅C</td>
<td>暖房</td>
</tr>
<tr>
<td>住宅D</td>
<td>暖房</td>
</tr>
<tr>
<td>住宅E</td>
<td>暖房</td>
</tr>
<tr>
<td>住宅F</td>
<td>暖房</td>
</tr>
<tr>
<td>住宅G</td>
<td>暖房</td>
</tr>
<tr>
<td>住宅H</td>
<td>暖房</td>
</tr>
<tr>
<td>住宅I</td>
<td>暖房</td>
</tr>
<tr>
<td>住宅J</td>
<td>暖房</td>
</tr>
<tr>
<td>住宅K</td>
<td>暖房</td>
</tr>
<tr>
<td>住宅L</td>
<td>暖房</td>
</tr>
<tr>
<td>住宅M</td>
<td>暖房</td>
</tr>
<tr>
<td>住宅N</td>
<td>暖房</td>
</tr>
</tbody>
</table>
4.2 住宅Aにおけるエアコンの長期測定

(1) エアコンの運転状況

住宅Aのエアコンは、年間毎日エアコンが運転されている。計測器を常時接続し、2003年8月から2006年1月まで、長期測定を実施している。図3、4に消費電力、吹出空気のエンタルピー差(以下エアコン出力)、室内機・室外機吸込温度、室外機吸込温度、コンプレッサのインパータ周波数、エアコン室内機の循環風量、部分負荷率の日平均値を示す。

実使用時消費電力の平均値は、冷房時では128.7W、暖房時では233.0Wであり、消費電力は冷房時に比べて暖房時に多い。エアコン
出力の平均値は、暖房時では822.32W、暖房時では729.4Wである。平均発熱量は暖房時で4.77kW/㎡、暖房時では6.28kW/㎡となり、暖房時に発熱が多い。インバーバラ周波数は暖房時では0～109.5Hz、暖房時で0～122.7Hzに変化する。平均インバーバラ周波数は冷房時が43.3Hz、暖房時が38.7Hzであり、冷房時のインバーバラ周波数は冷房時のエアコン出力が大きいため、高くなる傾向がある。電力消費量の日平均値は冷房時では0.21～0.85、暖房時では0.16～0.38の範囲に入り、冷房時は暖房時と比べて電力消費量が小さいため、部分負荷率が比較的大きくなる傾向がある。

(2) エアコン出力の累積頻度
図6に、冷房時と暖房時の住宅Aのエアコン出力の累積頻度を示す。住宅Aでは過年エアコンを運用しているが、ここでの冷房期間を6月1日から9月30日、暖房期間を11月1日から3月31日とし、各々の累積頻度を計算した。内熱発熱量78kWの住宅Aの冷房時では約800～1300W、暖房時では約900～1000Wである。この住宅では、暖房時における内部発熱が比較的大きいために、冷房時に比べてエアコン出力が低い値で動作している割合が多い。

(3) 室内外温度差と実使用時COP
図6に、住宅Aで測定した室内外温度差と実COPの日平均値の関係を示す。室内外温度差は、室内機吸込温度から室外機吸込温度を引いた値である。冷房時、暖房時ともに室内外温度差が大きくなると実COPは増加する傾向が見られる。冷房時、暖房時の室内外温度差と実COPの回帰式を図6に示す。冷房時は寄与率（R²）が0.04であり、室内外温度差が大きくなるにつれて実COPが高い値となっている。冷房時の寄与率が低い理由は、冷房時には暖房時と比較して室内外温度差が小さく、換気負荷や開口部からの日射の影響により相対的に実COPのばらつきが大きくなるためと考えられる。参考までに冷房時のデータをあわせて算出した回帰式を図6に示す。

4.3 その他の住宅におけるエアコンの測定結果
(1) 室内外温度差と実COPの関係
図7に住宅Aを除くその他の住宅の冷房時、暖房時の測定期間における室内外温度差と平均実COPの関係を示す。冷房時、暖房時ともに住宅毎に測定した実COPと室内外温度差の寄与率（R²）は小さい。内熱発熱量と実COPの寄与率が低い理由はエアコンの設置状況、設定温度、エアコンが受ける暖房負荷により、同室内外温度差において実COPが変化するためであると考えられる。
（2）住宅H②における室内外温度差と実COPの関係
図8に住宅H②で測定した1時間毎の室内外温度差と実COPの関係を示す。冷房時、暖房時ともに室内外温度差と実COPの相関係数は低い。暖房時と冷房時を比較すると、住宅A同様に冷房時の実COPは暖房時の実COPよりも高い値となっている。

（3）実使用時における電力消費量の定格電力消費量に対する割合
図9、図10にそれぞれ冷房時、暖房時におけ実使用時電力消費量の定格電力消費量に対する割合の累積頻度を示す。冷房時では住宅Bを除き定格電力消費量以下で運転している割合が全体の60％以上を占めている。住宅Bは夜間閉め込むのみ冷房をする住宅であり、立ち上がり負荷のため、定格電力消費量以上で運転している割合が増加している。暖房時では定格電力消費量以下で運転している割合が全体の50％以上を占めている住宅Bを加え、50％を下回る住宅が6軒あり、運転状況に大きな相違が見られる。定格電力消費量以上での電力消費量の多い住宅A、住宅B、住宅Kは、吹き抜けのあるリビングに設置されたエアコンであり、負荷が大きいため、定格電力消費量以上で運転している割合が増加している。

5 まとめ
本研究は、筆者らが開発したCOP簡易測定システム及び家庭用エアコン実使用時のCOP測定を行い、家庭用エアコンの運転状況（実COP）に関する基礎的データを得た。測定結果のまとめは以下の通りである。
①実COPとカタログCOPには大きな相違がある。冷房時はカタログCOPより実COPが高く、暖房時はカタログCOPより実COPが低い傾向がある。
②住宅Aにおける長期測定の結果、暖房時よりも冷房時の消費電力およびエアコン出力が多い傾向がある。
③暖房時の実COPは、冷房時の実COPと比べて小さい値である。
④エアコン運転時間中において定格電力消費量以下で運転している割合は、暖房時より冷房時の方が高い。

謝辞
本研究を行うにあたり、対象住宅の居住者の方に多大なる協力を得ました。データの集計及び解析においては、新潟大学大学院家政学研究科の皆様に協力していただきました。ここに記して深く感謝の意を表します。

参考文献
1) 経済産業省「2005年エネルギー白書 エネルギー安全保障と地球環境」. 2005.11
2) 林植州、坂口洋、佐藤幸雄、池田克彦：「家庭用エアコンCOP簡易測定システム」. 日本建築学会技術報告集, 第22号. 2005.12
3) 森田利正、松下松：「ルームエアコンの使用実態と消費者意識に関する調査」. 住信実証株式会社が主たるファンド. 2005.4
4) 林植州、野村孝司、細川秀行：「家庭用エアコンの部分負荷特性と除湿性能に関する研究」. 日本建築学会技術報告集, No. 66. 2005.9
5) 林植州、野村孝司、細川秀行：「家庭用エアコンの部分負荷特性と除湿性能に関する研究」. 日本建築学会技術報告集, No. 66. 2005.9
6) 田中吉之、アラブマヤ：「家庭用ルームエアコンディショナーの期間成績評価手法に関する研究」. エアコンシステム・給湯・換気・暖房技術研究所. No. 18, pp. 167-170,2001
7) 日本暖房学会「JIS B 8615-1:1999 エアコンディショナ 第1部 送風形エアコンディショナとヒートポンプ エコ性能及びエコ性能試験方法」. 1999

(2006年7月5日最終受理, 2006年11月24日採用決定)