模型実験による火災時の駅舎内煙流動性状の把握
— バッチャンシファティシステムによる地下鉄駅舎内の気流制御に関する基礎的研究—
UNDERSTANDING OF THE SMOKE MOVEMENT IN A STATION BUILDING DURING A FIRE BY THE MODEL EXPERIMENTS
—Basic study on passive smoke control system in an underground station using the daily natural ventilation—

徳永英*1, 大岩大祐*2, 天野賢志*1, 内山聖士*3
出村嘉一*4, 水野雅之*5, 大宮重文*6, 辻本誠*7
Takeshi TOKUNAGA, Daisuke OIWA, Kenji AMANO, Seiji UCHIYAMA,
Yoshikazu DEGUCHI, Masayuki MIZUNO, Yoshihumi OHMIYA
and Makoto TSUJIMOTO

Today, smoke eliminating equipments which are going to work at a fire are adopted at a lot of subway stations in Japan. But there is some possibility of not working at a fire. So we think that designing a new fire safety system will improve the reliability of fire safety.

Solar chimneys and Dry mist equipments which are studied in recent years are installed in our system (named passive safety system). So passive safety system can usually control the movement of air in the subway station as outside → a staircase → a platform (or concourse) → a solar chimney → outside. Smoke will be discharged from a solar chimney and safety of staircases will be kept at a fire.

We made experiments based on scaling laws using 1/20 scale model of a subway station to understand the movement of smoke at a fire in a subway station. In addition to the model experiments, we simulated the movement of smoke using CFD software.

Keywords: Model Experiment, Scaling Laws, Subway-Station, Smoke Movement, Dry Mist, Solar Chimney

1. はじめに

現在、我が国の地下鉄駅舎には種々のアクティブな、すなわち災害時に作動する防災対策が採られているが、既設の排煙設備が機能せず2名の負傷者が外出2004年8月の赤坂見附駅火災にも見られるように、これら排煙制御性は完全に保証されているわけではない。

日常的に駅舎内の空気の流れが、手を加えることなくそのまま火災時の煙幕のために利用でき、避難安全を図るシステムが構築されれば、火災に対する信頼性を大幅に改善することができる。また、この防災対策で生じる空気の流れで一般的な空間設備による換気、冷房が代用でき、かつこれに必要なエネルギーが機械式空調設備よりも小さければ、地球環境問題においてもより好ましいものとなる。

本研究において提案するパッシブセイファティシステムは、近年研究が進められているソーラーチミニーによる煙突効果の促進*3*4*5*6およびドライミスト噴霧による制御効果*6*7を地下鉄駅舎計画に組み込むことで、一年のどの期間でも日常時の気流を一定方向に保ち、機械制御なしに火災時の煙流動を適切に支障がないように制御するものである。本システムでは、ホームにホームクリーンドアを設置することにより、駅舎内部と車両部分を空間的に分離し、駅舎内部の気流制御を容易にする。この状態でソーラーチミニーにより換気を行い、それに加えて、階段室入口上部にドライミストを噴霧し、間接空気を冷却することで階段室に下降気流を生成する。

これにより、常に外気 → 階段室 → コンコース・ホーム → ソーラーチミニー → 外気 の方向に空気が流れるように気流制御を行うことが可能となり、夏季の日常時には自然換気システムとして空調負荷の削減を実現し、火災時にはそのまんの状態で排煙システムとして十分な避難安全性を確保することなく、作動信頼性の問題解消と同時に省エネルギー化に寄与できる（図1）。

本システムを実際に地下鉄駅舎に採用するにあたり、システムが

*東京理科大学 大学院生
**研究当時 東京理科大学 大学院生
***三隅工業技術短期大学部 研究員
****研究当時 東京理科大学 COE PD研究員・博士(工学)
*****東京理科大学 助教授・博士(工学)
******東京理科大学 教授・博士(工学)

Graduate Student, Tokyo University of Science
Graduate Student, Tokyo University of Science
Researcher, R&D Division, SANKI Engineering Co., Ltd.
COE PD Assitant, Tokyo University of Science, Dr. Eng.
Lecturer, Tokyo University of Science, Dr. Eng.
Assoc. Prof., Tokyo University of Science, Dr. Eng.
Prof., Tokyo University of Science, Dr. Eng.

NII-Electronic Library Service
有効に働くための駅舎内部での境界条件を確認する必要がある。具体的には、効率よく給気・排気を行うことが可能なソーラーチャンバーの寸法を見出し、また、階段室へのサイクルの形成を防ぐための遮蔽壁等の設計条件を把握することが重要となる。そこで、本研究では実駅舎の1/20スケール模型を作製し、相似則に基づき実験を行った。

2. 模型実験概要
2.1 実験設備
図2、図3に実験に使用した模型の写真、断面図、平面図を示す。なお、模型は長さ200m、幅15m、高さ10mの実駅舎の1/20スケールのものである。

計測は、模型内の温度分布、移動温度、および換気・排気性能の確認を目的として、図3に示すA-F、a,b、①〜⑤点で温度を計測し、給気口中央および排気口での風速計測を行った。なお、熱電対は各計測位置で、床面から高さ300mmまでは100mm間隔、それ以降は80mm間隔で設置した。

ただし、模型実験でのドライミスト装置、ソーラーチャンバーを設置することは困難ため、ドライミスト装置は階段室上部に設置した冷却器により代替し、ソーラーチャンバーは文献1を参考に60℃に設定した面状電熱ヒータをデミニー内壁の1つの面に設置することで代替とした。なお、冷却器は、ボックス内に冷水を通じた管を配置し、ボックス内空気を外気温より3℃程度低下させ、冷気を自然対流で階段室内に流入させるものであり、ドライミストの蒸発による周囲空気の冷却効果と類似する効果をボックス内の管により再現した。冷却器の内壁構造を図4に示す。また、デミニー内の面状電熱ヒータは日射熱の吸収による北側壁面・ガラス面の温度上昇を再現するために設置した。実験に用いた各種デミニーの写真を図5に示す。デミニーの高さは250mm、500mmの2種類とし、デミニーの断面寸法は、断面積が設計口面積の0.5、1.0、2.0倍に等しい。
実験で使用した機器を図1に示す。

表1 実験使用機器一覧

<table>
<thead>
<tr>
<th>項目</th>
<th>機器</th>
<th>計測精度</th>
</tr>
</thead>
<tbody>
<tr>
<td>温度計</td>
<td>Cクリーンで0.2mm</td>
<td>±(0.02%+0.02)%</td>
</tr>
<tr>
<td>風速計</td>
<td>熱線風速計 (指向性)</td>
<td>±(3%+0.1)m/s</td>
</tr>
<tr>
<td>压力計</td>
<td>ピエロ風速計 (指向性)</td>
<td>±0.15 Pa</td>
</tr>
<tr>
<td>可視化装置</td>
<td>アルゴン酸ガス (LPGガス)</td>
<td>～</td>
</tr>
</tbody>
</table>

実験に使用したLPガスの成分：
プロパン97.6%、イソプロパン1.2%、エタン0.9%、プロピレン0.2%。

本実験で用いた相似則を式(1)～(3)に示す。式(3)に基づき、火源の発熱速度は1.686Wとし、これは、実験で3Wに相当し、小規模のカメラ内の可燃物を1/3程度燃焼した場合を想定したものである。なお、火源径は100mmとした。溶燃ガスをLPガスを用いた。

\[
\begin{align*}
\frac{dI}{dV} &= u = (L) \frac{dV}{dV} \quad \text{(1)} \\
\frac{dT}{dV} &= (L) \frac{dT}{dV} \quad \text{(2)} \\
\frac{dQ}{dV} &= (L) \frac{dQ}{dV} \quad \text{(3)}
\end{align*}
\]

ここで、\(L\)は模様と原形に関する物性値。

また、本実験の相似則は、式(4)に示す相似則と、壁面への熱伝達が相似になるように選定する必要がある。本実験では、壁面の相似則の必要性に、模型を模様、実験においてはアクロ板10mm厚、床は合板12mm厚を用いた。ただし、安全のため火源上部の天井2000×750mmのみ石膏ボード9.5mm厚とした。これにより、本実験は実験壁面条件をほぼ一致した場合、相似則は満たすが、液体本体間の熱伝達は相似にならない(4)。

\[
\frac{dI}{dV} = n(L) \frac{dV}{dV} \quad \text{(4)}
\]

2.4. 事前検討
本実験を行うに先立ち、以下の項目について検討を行った。

（1）同一設定条件下での模様の再現性検証
本実験における模型実験は、実験室温度、風速等の室内環境の差が実験結果に大きな影響を及ぼす可能性があることが懸念されたため、同一設定条件下での模様内温度分布の再現性を検証した。実験No.1の条件での実験を3回行ったところ、図3に示す温度・風速計測点での計測値がほぼ一致したことから、同一条件下での熱伝送性の再現性が確認できた(6)。

（2）給気口風速分布測定
図6は実験No.1においてピット管により測定した排気口風速分布を示す。なお、ここで計測器の使用による気流状態への影響を小さくするため、計測位置のみを変化させ、同一設定条件下での実験を3回行った。

排気口風速分布は非常に複雑な分布を示しているため、排気量を把握するにはここで計測した9種類でも不十分すること、また、排気口による計測誤差が約0.1m/sであるため、計測結果に対する測定の占める割合が非常に大きくなる等の問題点は残るものの、全体の傾向は明るかと考える。しかし、それだけの数の風速を一定に計測するには、模様の排気口では小さすぎ、また、実験条件において複数回に分けて計測することは非常にコストがかかることから、以下の考察では、図6に示すように気流状態が比較的複雑でない給気口の中心風速を換算量の大小を示す指標として用いて、各実験条件間の比較、考察を行う。ただし、給気口に観測した計測に用いた熱線風速計も、計測値0.00〜0.25m/sに対して±0.10m/s程
度の計測誤差が生じる可能性を有しているため、計測値そのものの信頼性はそれほど高くなないことには注意されたい。

3. 模型実験、数値シミュレーション結果および考察

3.1 チムニー断面寸法、高さ変更

本実験では、効率的に給・排気が行われるチムニー寸法を採用するため、チムニー断面寸法および高さをパラメータとして、表2中のNo. 1 ～No. 10 に示す条件でそれぞれ実験を行った。図7に給気口中心風速の時系列変化、階段室中央a点およびチムニー内①～⑤点の温度上昇分布を示す。ただし、計測結果から図を作成するにあたり、給気口中心風速に関しては時間変動が激しいため前後30秒間の計測値の平均値をプロットし、各温度計測点の垂直温度分布に関しては着火後1740～1800秒（29～30分）の実験室温からの温度上昇△Tの平均値とした。（以下、同様）

給気口中心風速（図7上段）を比較すると、各ケース間で着火前には大差は見られない。着火後は、チムニー高さhが500mの3ケースに比べて250mの場合は全体的に低速化しているが、これは、hが500mの場合に比べて250mの場合にはチムニー内で内外の差圧が確保できなかったことによると考えられる。その結果、チムニー頂部で外気の逆流が生じやすくなり、また、階段室内a点の温度上昇（図7下段）からも判断できるように、階段室へ多量の煙が流入したと言える。なお、外気の逆流が生じていることは、実験の目録記録およびk=250mのケースではチムニー内温度上昇が、床面からの高さhが500m以下では大きいものので、それより上部では小さくなっていっていることが判明した（図7中段右下、下段）。

なお、チムニー高さに対する断面積が大きすぎる場合にも、同様に外気の逆流現象が見られ、チムニー断面が大きすぎないにしろ排煙能力が上るわけではないと言える。これは、チムニー高さが500mの3ケースの給気風速時系列変化（図7上段）を見るとチムニー断面が425mm角、600mm角の場合で大差がないこと、また、600mm角の場合ではチムニー上部での温度上昇が小さいことから判断でき（図7中段右下、下段）。

一般的に給気口断面積に対して排気口断面積が増大すると、中性排気は排気口側へ流れ、チムニー頂部での内外差圧が小さくなると考えられているが、このことに加え、火災時の煙がチムニーに流入後のチムニー内温度は、チムニー断面が小さい場合には、断面が行方不明、外気の逆流が起こりやすい等の理由から平均的に見て低くなるために、チムニー断面が小さい場合と比較して内外差圧が確保できない。排気量Qはチムニー断面積A、チムニー内浮力による内外差圧△P、として、A/△Pに比例するために、本実験で想定した駅舎模型においては、チムニー断面が425mm角、600mm角の場合では結果として給・排気差圧が発生しなかったと言える。

3.2 排煙と廃熱等の寸法の変化による階段室遮煙への影響

本節では火災時のバンクセイシステムの有効性を判断する際の指標の1つである階段室→火災室間での遮煙（以下、階段室遮煙）性能について考え、具体的には、階段室→火災室間で設置した排煙等の寸法の変化が階段室遮煙に及ぼす影響を、模型実験および数値シミュレーションにより考察する。

(1) 排煙等の寸法と階段室遮煙状況の関係

本節では、火災時の階段室遮煙についての考え方について述べる。まず、ブームの天井面衝突後もしくは煙層下端に流入後、階段室側に向かう煙層に注目する。ここで、階段室→火災室間に設置した排煙等に煙層が到達する前の煙層の運動量をm_Hsと表す（図8）。仮に、煙層の階段室側への進行が排煙等で制限されるとする、排煙等での煙層の流速はゼロとなることから、この時の煙層の運動量もゼロとなる。運動量の時間的変化は外部から働く力によるので、この時働く力はm_Hsとなり、同様に排煙が階段室に流入しようとする力もm_Hsと表せる。
一方で、本システムでは、ドライミスト装置およびソーラーチャムニーの条件が決まれば、垂れ壁等の寸法を変化させた場合でも、システムが駅舎内の空気を循環しようとする力（以下、循環動力F）は一定である。ここで、階段室遮煙の成立が

\[\frac{\Delta u_g}{\Delta u} = \frac{\rho u^2}{A_d} \]

と循環動力Fとのバランスで決定するとすれば、Fを小さくすることにより、いよいよ階段室遮煙が成立する条件に至ると考えられる。なお、本システムを用いた駅舎では、火災から見て階段室とは逆側の空間が大断面のソーラーチャムニーを介して外気に開放されているため、垂れ壁等の寸法の変化により煙層高さはそれほど変化しない。

次節以降では、模型パターク1において、給気面積が1/20 模型スケールで6000m×3000mの場合最も排出効率の良い、断面420mm角、高さ500mmのチャムニーを用いて(3.1 チャムニー寸法変更)参照、垂れ壁等の寸法を変化させた場合の階段室→火災間隔の遮煙状況の変化について考える。

(2) 垂れ壁下通路遮断変更（模型パターク1）

図9に、垂れ壁下変更H'を100mmとして、垂れ壁下通路遮断Hを750mm（No.1），450mm（No.2），300mm（No.3）とした場合の実験結果の比較を示す。これらの条件では、目視から、垂れ壁下通路遮断H'を300mmとしたNo.3のみで階段室→火災間隔の遮煙が確認できた。

図9 垂れ壁下通路遮断変更時の比較

垂れ壁下端より50mm下方である点高さ350mmでの温度上昇（図9上段左）を比較すると、No.1，No.2，No.3の順に大きくなっている。これは、目視より階段室遮煙が確認できたNo.3では、この位置で煙層とシステムの循環流の衝突が起こるために温度上昇が抑えられたが、階段室羽が進入したNo.1，No.2ではこの衝突が小さかったことが原因と考える。また、外壁よりも低い位置であると考えられる点下点、床面からの高さH=200mmでの温度上昇がNo.1，No.2，No.3の順で大きくなっているのは、No.1，No.2では一度階段室へ流入した煙が、システムの循環流により再び火災側へ移動してきたためと考える。

C点上部およびチャムニー内C点における温度上昇（図9上段右、下段左）を見ると、No.1と比較してNo.3で若干ではあるが大きな値を示しているが、これは、階段室遮煙が確認できたNo.3では垂れ壁で煙の進行が止められたため、本来階段室側へ向かう熱量がチャムニー側へ流れてきたためと考える。

次に給気口側風速（図9下段右）を見ると、階段室遮煙が確認できたNo.3では最も小さい。しかし、垂れ壁下通路断面積がNo.1と比べNo.3で2/5に減っているのに対し、結果として給気量低下が僅かであるために循環流の垂れ壁下通路時の流れが遅くなり、階段室→火災間隔の遮煙が確認されていったと予想できる。そこで、給気口中心風速およびC点，②点での温度上昇にNo.1およびNo.2で差がないことから、通路幅が450～750mmの範囲では階段室→火災間隔の遮煙性能には若干影響があるものの、駅舎内循環流特性状全般に与える影響はそれほど大きさないと考えられる。

(3) 垂れ壁高さ変更（模型パターク1）

図10に、垂れ壁下通路幅Wを750mmとして、垂れ壁高さHを100mm（No.1），150mm（No.3），200mm（No.5）とした場合の実験結果の比較を示す。これらの条件では、目視から、垂れ壁高さHを200mmとしたNo.5のみで階段室→火災間隔での遮煙が確認できた。

図10 垂れ壁高さ変更時の比較

各実験ケースにおけるB点下方向の温度上昇およびC点，E点での風速上昇（図10上段、下段右）の大小関係は「3.2（2）垂れ壁下通路幅変更」に示した理由と同様の理由によると考えられる。ただし、E点ではC点と比較して差により各実験ケース間の温度上昇の差が小さくなっている（図10下段左）。なお、C点およびE点での温度上昇はNo.4，No.5でほとんど変わらないが、給気口中心風速も両者でほとんど差がない（図10下段右）ことを併せて考えると、階段室遮煙成否の境界が垂れ壁高さ150mm付近にあることが予想される。

3.2 (2)，3.3節で行った実験から、本システムを用いた駅舎は、適切な設計寸法の下では火災時の安全性が確保することができた。ただし、本実験では段階的に垂れ壁高さ（通路幅）を大きく（小さく）し、200mm（300mm）とした場合に結果として階段室遮煙が成立することを確認するに留まており、循環動力が変化した場合、例えば中間季、冬季などドライミスト装置を製作させない場合での火災時の安全性を確保するためには、垂れ壁高さもしくは垂れ壁下
通路幅をどの程度にすれば良いかといった階段室遮煙成否の境界条件を示すまでには至っていないが、これに関する詳細な検討は別途で扱うこととする。

(4) 数値シミュレーション

模型実験の数値シミュレーション（以下、CFD）による再現を試み、本システムを採用した地下鉄駅舎において火災が発生した際の煙流動のCFDによる予測可能性について検討する。特に、本節では、2.2、(2)、(3)節で検討してきた遮煙高さおよび遮煙壁下通路幅を変更させる場合の計算を行い、実験結果との比較を行うことで、階段室遮煙成否の境界条件を計算により把握することが可能か否かを検討する。また、CFDにより模型実験では測定が困難であった階段室-火災室間の垂直差圧分布についても把握することが可能となるため、前節までで検討した階段室-火災室間遮煙について解析結果を基に考察を加える。

計算には米国商務省標準技術研究所（NIST）開発のFire Dynamics Simulator Version 4.06（以下、FDS）を使用した。離散化手法は有限体積法であり、時間進行スキャムは陽的予測・修正法。空間差分法は二次精度中心差分法とした。移流項は時間進行の予測値の段階では一次精度風上差分、修正後の段階では一次精度風下差分を行っている。乱流を表現するために、計算には、SGSモデルとして標準Smagorinskyモデルを用いてLESにより行った。この際、Smagorinsky定数C_sは0.2を用いた。また、燃焼モデルとしてMixture Fractionモデルを用いた。なお、計算では壁面間の放射熱交換の影響も考慮している。

計算領域は、長さ8750mm×幅850mm×高さ700mmと、長さ1350mm×幅850mm×高さ1300mmの2つの立方体領域を連結させたものであり、この領域内部に実験模型と同じ寸法の区画を設置した。計算領域概要図を図11に示す。

境界条件として、計算開始時における計算領域内の空気温度および壁面温度は実験実施時の実驗室温度とし、区画を構成する壁材料および火源、実験に用いたものと同一とした。冷却器および壁面酸熱ヒータを再現するにあたり、給気口の上下150mmの位置に、給気口と同温度600mm×300mmの温度を0℃に固定した面状の熱源を設置すると共に、壁と同位置のチャムニ室壁内の1つを面で60℃に固定した。なお、計算では、計算開始300秒後に100mm角の火源に1.68kWの発熱速度を与え、その1800秒後に計算を終了している。

図12に遮煙壁下通路幅Wを750mmとして、遮煙高さHを100mm（No.1）、150mm（No.2）、200mm（No.5）とした3ケースについて、実験とCFDによる駅舎内温度上昇分布（着火後1740〜1800秒の平均値）、給気口中心風速（着火後1200〜1800秒の平均値）、階段室-火災室間の温度差（着火後1740〜1800秒の平均値：FDSのみ）の比較を示す。ここで、階段室-火災室間にわんとは、垂直壁中心から階段壁側および火源側をそれぞれ遮煙から100mm離れた位置かつ幅方向中央での静圧の差である。

B点垂直差圧分布（図12上段）を見ると高い精度で予測できていることが分かる。C、D、E点においても、実験と比べてFDSでは上方向の温度変化が若干大きくなっているものの、全体的に見れば良く一致している（図12中段）。また、給気口中心風速（図12下段）も両者でほぼ一致している。なお、各温度計測点のΔTおよび給気口中心風速の時系列変化も両者で概ね一致していた（図13）。

图11 計算領域概要図

图12 実験とFDSの比較（遮煙壁高さ変更時）

图13 B点の床面からの高さH=350mmにおけるΔTおよび給気口中心風速の時系列変化の比較

階段室-火災室間の温度差（図12下段）を見ると、遮煙壁高さ150mm、
200mmの場合は、床面からの高さHが300mm以上の範囲では、差圧分布の傾きはほぼ等しい。つまり、層間温度と階段室内温度との差が両者でほぼ等しいことになる。また、乗れ壁高さ200mmの場合、乗れ壁のある高さに中性帯が存在するため遮煙が行われていることが読み取れる。乗れ壁高さ150mmの場合には若干階段室へ煙が流れるものの、階段室温度を大きく上昇させるほどではないことが分かる。

乗れ壁高さHを100mmとして、乗れ壁下通路幅Wを750mm（No.1）、450mm（No.2）、300mm（No.3）とした場合のシミュレーション結果も非常に良いため実証結果を再現している（図12、図14左）。階段室ー火災室間圧差（図14右）を見ると、通路幅が小さくなるほど火災室に対する階段室の静圧が大きくなってしまい、それに伴い中性帯高さも低くなっている。この結果、通路幅300mmでは乗れ壁のある高さに中性帯高さが到達しないため、この場合には階段室ー火災室間で遮煙が行われていることが読み取れる。なお、これらの結果は「3.2（2）」、「3.2（3）」節で記載した実験結果とも一致する。

3.3. 模型パターンIーIVの比較

前節まで本システムにおける基礎的な煙流動性状に関する知見を得るために、階段室1つ、チムニー1つ、ゲームパターン1について述べてきたが、実際の駅舎を考えた場合、少なくとも2方向遮煙を考慮した計画を扱う必要がある。ここでは、2方向遮煙が可能な計画である模型パターンIIーIV（図13参照）についてそれぞれ模型実験を行い、階段室、チムニーの組合せの変化が駅舎内の煙流動性状に及ぼす影響について考察する。

模型パターンIーIVにおける煙流動性状を比較するため、それぞれ乗れ壁高さHを100mm、乗れ壁下通路幅Wを450mmとした場合の実験結果について示す（図15）。なお、いずれもチムニーの角度は、断面425mm角、高さ500mmとなっている。

ここで、火災時、煙がチムニーに入流した後の本システムの循環動力Fがチムニーの排煙能力によって概ね決まるとするならば、模型パターンIIーIVでは模型パターンIと比較して以下が異なる。

I. チムニーの数に応じて階段室の数が2倍になることにより、1つのチムニーからの排出による循環動力Fが複数の階段室には分割されるため、各々の階段室遮煙に対して不利に働くことが予想される。ただし、模型パターンIIIでは模型パターンIと比較して、[チムニーの数/階段室の数]は変わらないが、火災時に高温の煙はチムニーの1つにのみに流入し、これにより駅舎内の気流状況は支配されると考えられ、火災時には模型パターンIVと近い状況になると予想される。

II. 火災からチムニーまでの距離が近いことから遮煙の失熱が小さくなりチムニーに流入する煙温度が高くなるため、排煙能力が上がり、各々の階段室遮煙に対して有利に働くと予想される。

上記IIの理由から模型パターンIーIVでチムニー内に流入する煙温度は模型パターンIと比べて高くなるが（図15上段）、このためチムニーの排煙能力は上がりと予想されるが、火災側の階段室上温度分布（図15中段）から分かりるように、模型パターンIーIVでは模型パターンIと比べ階段室1へ多くの煙が流入している。このことから、階段室ー火災室間での遮煙の観点から見れば、上記に記載した理由により2の方は影響は大きいと言える。なお、模型パターンIIーIVでの着火後の給気口中心風速（図15下段）は、階段室1の風速が階段室2での風速よりも大きくなっているが、これは階段室1に煙が流入し、その浮力がシステムの循環流の妨げになったことによると考えられる。

ただし、ここでは煙がチムニーに流入した後の状態に注目してきただけで、火災発生直後には煙はチムニーに達しておらず、従って上記IIの影響が無視できる。これにより、模型パターンIーIVでは、模型パターンIと比べて火災発生直後の階段室遮煙が難しくなり、階段室1に多量の煙が流入した可能性があり、この火災室ー階段室と仮定した煙の流れが形成される場合でも、はじめて上記IIにより循環動力Fが大きくなる。ここで、初期に火災室ー階段室という煙の流れが形成された場合、チムニーへの煙流入口後の階段室遮煙状況に大きな影響を及ぼしたことは十分考えられるが、これらについては今後課題とする。しかし、この場合でも、チムニーへの煙が流入するまでの間に階段室遮煙が行われて、その後も階段室の安全を確保する考えられることから、火災発生直後の階段室遮煙条件を見直すことが重要であると言える。

4. まとめ

地下鉄駅舎において日常時の送エネルギーと火災時の安全性確保を両立できるシステムとして、パッシブセイファイシステムを提案した。また、本システムの有用性を確認するために、相似則に基づ
構成材料の差によってどの程度の温度差が生じるのかを検討するために、3.2.4.5節で記載した計算条件で、実験1の設計条件に対して模型構成材料のデータを変更してそれぞれ計算を行った。図3に示すB点およびD点における着火後4～5分および29～30分までの平均温度上昇変動分布の計算結果を図16に示す。

表3 材料の熱物性値\(^{\circ}C\)

<table>
<thead>
<tr>
<th>材料</th>
<th>(\rho) (kg/m(^3))</th>
<th>(c_p) (J/kg(^{\circ}C))</th>
<th>(k) (W/m(^{\circ}C))</th>
<th>(\lambda_0) (W/m(^{\circ}C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>普通コンクリート</td>
<td>2000</td>
<td>0.98</td>
<td>1.5 \times 10(^{-2})</td>
<td>2.92</td>
</tr>
<tr>
<td>木（含水率0%)</td>
<td>300</td>
<td>1.30</td>
<td>6.9 \times 10(^{-2})</td>
<td>2.69 \times 10(^{-2})</td>
</tr>
<tr>
<td>アクリル樹脂</td>
<td>1190</td>
<td>1.40</td>
<td>2.1 \times 10(^{-2})</td>
<td>3.50 \times 10(^{-2})</td>
</tr>
<tr>
<td>石膏ボード</td>
<td>863</td>
<td>1.15</td>
<td>1.6 \times 10(^{-2})</td>
<td>1.58 \times 10(^{-2})</td>
</tr>
<tr>
<td>カーボン繊維</td>
<td>3000</td>
<td>1.40</td>
<td>1.7 \times 10(^{-2})</td>
<td>3.70</td>
</tr>
</tbody>
</table>

図16 模型構成材料の違いによる模型内温度変動分布の相違

注) 1) 各位置における焼入値、及び着火後30分の状況を記載した。2) 各実験における温度値が示されたものである。3) 各位置における温度値が示されたものである。4) 各実験における温度値が示されたものである。5) 各実験における温度値が示されたものである。6) 各実験における温度値が示されたものである。