LESによる2次元閉空間内の乱流場における
二分子化学反応現象の数値解析
マイクロスケール大気汚染予測システムの開発 その1

NUMERICAL STUDY ON BI-MOLECULAR REACTION IN TURBULENT FLOW FIELD WITH TWO-DIMENSIONAL TEST ROOM USING LES

Development of prediction system for micro-scale atmospheric pollution Part 1

The contaminated substances in atmosphere are chemically reactive, and their reactions play main roles in the geneses of atmospheric pollutions. In this study, Large-Eddy Simulations (LES) with a two-dimensional enclosed region are carried out to investigate the influence of chemical reactions in turbulent flow fields. The bi-molecular reactions of Ozone with Limonene or Ozone with nitric monoxide, and wall deposition phenomena of these matters are modeled into the numerical analyses. The calculated results are consistent with experimental data. It is also revealed that the time fluctuation intensities of reactants concentration and their cross-correlations affect the mean reaction rates.

Keywords: LES, Atmospheric Pollution, Chemical Reaction, Wall Deposition, Cross-Correlation

Graduate Student, Dept. of Architecture, Faculty of Eng., The Univ. of Tokyo

Hideki KIKUMOTO, Ryozo OOKA, Hong HUANG,
Research Fellow, I.I.S., the Univ. of Tokyo, Dr. Eng.

Takeaki KATSUKI and Kazuhide ITO

Assoc. Prof., IGSES, Kyushu Univ., Dr. Eng.

 Assoc. Prof., Center for Public Safety Research, Tsinghua Univ., Dr. Eng.

Prof., I.I.S., the Univ. of Tokyo, Dr. Eng.

Assoc. Prof., IGSES, Kyushu Univ., Dr. Eng.

Prof., Center for Public Safety Research, Tsinghua Univ., Dr. Eng.

Assoc. Prof., IGSES, Kyushu Univ., Dr. Eng.

Graduate Student, Dept. of Architecture, Faculty of Eng., The Univ of Tokyo

Prof., LLs., the Univ. of Tokyo, Dr. Eng.

Research Fellow, LLs., the Univ of Tokyo, Dr. Eng.

Assoc. Prof., IGSES, Kyushu Univ., Dr. Eng.

Assoc. Prof., IGSES, Kyushu Univ., Dr. Eng.

Assoc. Prof., IGSES, Kyushu Univ., Dr. Eng.
濃度が減衰する過程を、模型実験によって検証している。また、それと同時に二分子化学反応と壁面沈着現象をモデル化し、低 Reynolds 数型 k-ε モデルを用いた数値解析を行っており、両モデルの予測精度評価を行っている。しかし、この中で化学反応度数定数に対して静的な環境で得られた値を採用しているが、環境工学で扱われる空間は一般に乱流場である。したがって、乱流速度や濃度分布の不均一性あるいは非定常性とされた点、化学反応速度に多大な影響を与えることが予想される。しかし、RANS モデルを用いた場合には、上記の記述で得られた応反度数定数を採用すると、反応速度定数に対する乱流の影響を無視して込み込むことができず、反応速度値の時間変動に関する相関の影響など、乱流場における化学反応速度の特性能十分に考慮されているとは言えない。

そこで、本研究では、上記の伊藤による実験を参考し、まず、Ozone-Limonene 間の二分子化学反応及びそれらの壁面沈着現象を LES に組み込み、実験値との比較から予測モデルの予測精度検証を行う。また、数値実験として Limonene を大気汚染の主要物質である一酸化窒素で置換し、化学反応速度定数の大きさの違いが濃度分布に与える影響を検討する。そして、LES による解析結果を用いて空間及び時間的に変動を捉え、それらが平均的な化学反応速度に与える影響を詳細に検討し、乱流場における化学反応現象の特性を明らかにする。

2. 数値解析手法
2.1 対象とする化学反応
一般に、多原子分子間の化学反応には、複数の素反応過程が内蔵し、初期の反応物質と最終的な生成物の間には、多くの中間生成物が介在する。伊藤によれば、数値解析の対象とした Ozone(αo)と Limonene(C6H5O)間の二分子化学反応においても、それは例外ではない。しかし、それら全ての中間生成物を数値解析に取り込み計算を行うことは、計算負荷の面からも困難である。また、本研究における最大の関心事は、乱流場における物質の濃度変動挙動の把握である。そこで、本解析では Ozone と Limonene の反応を Bi-molecular Reaction（二分子化学反応）と見なし、次に示す反応を第一の反応と対応する。

\[
O_3 + C_6H_{12} \rightarrow \text{product}
\]

(1)

この反応について、様々な反応が誘導され、特に Secondary Organic Aerosol(EOA, 2 次的有機エアロゾル)を始めとした多様な物質が生成される \(^{10,11}\)。しかし、先述のようにそれら個々の物質の定量的予測は本解析の範囲外である。そこで、Ozone と Limonene が反応するときに同時に生成されると仮定した仮想的物質（1式の右辺に記す C6H12）の濃度によって、多種の生成物の発生量予測に寄与することとする。

更に、伊藤の実験では対象外であるため、本解析では Limonene を一酸化窒素(NO)で置き換え、次式で示される反応の数値解析を行う。

\[
O_3 + NO \rightarrow O_2 + O_2 + NO_2
\]

(2)

これは主に自動車からの排気ガスを含む NO の大気中の Ozone によって比較的短時間に酸化される大気汚染解析の中でも主要な化学反応の一つであり、光化学オキシゲンなどの濃度予測においては重要なものである。そして、この反応は後に示すように(1式と比較して）化学反応速度がオーダーにして 10^6 程度大きくなり、化学反応の濃度分布に与える影響も増大するものと予想される。また、生成物には酸素と二酸化窒素の二つがあるが、解析条件の設定から両物質は同様の濃度分布をもつため、Limonene を用いたときと同様に右辺を product として置き換え、各々の濃度予測値とする。

尚、化学反応は通常発熱あるいは吸熱を伴うが、それらが流れ場に与える影響は小さいと見なし、本報では等温条件下で解析を行う。

2.2 化学反応速度のモデリング

数値解析においては、流れ場の基礎方程式に加え、反応物質 2 つと product の計 3 つの物質に関する濃度輸送方程式を連成して解くことが必要となる。Ozone 濃度を \(\phi_1 \)ppm, Limonene あるいは一酸化窒素の濃度を \(\phi_2 \)ppm, product の濃度を \(\phi_3 \)ppm とすると、それぞれの輸送方程式は以下の 3 式となる。

\[
\frac{\partial \phi_1}{\partial t} + u \cdot \nabla \phi_1 = \frac{\partial}{\partial x_i} \left(D_o + \nabla \text{SGS} \sigma_{o} \right) \frac{\partial \phi_1}{\partial x_i} + \nabla \cdot \phi_3 - \nabla \cdot \phi_2
\]

(3)

\[
\frac{\partial \phi_2}{\partial t} + u \cdot \nabla \phi_2 = \frac{\partial}{\partial x_i} \left(D_o + \nabla \text{SGS} \sigma_{o} \right) \frac{\partial \phi_2}{\partial x_i} + \nabla \cdot \phi_3 - \nabla \cdot \phi_1
\]

(4)

\[
\frac{\partial \phi_3}{\partial t} + u \cdot \nabla \phi_3 = \frac{\partial}{\partial x_i} \left(D_o + \nabla \text{SGS} \sigma_{o} \right) \frac{\partial \phi_3}{\partial x_i}
\]

(5)

ここで、オーバーパー（下）は、LES におけるフィルタ操作によって粗粒化された grid scale (以下、GS) 成分であることを表す。

\(D_o, Da, Db, Dc \)は、物質の分子拡散係数[m/sec], vsecは sub-grid scale (以下、SGS)の渦動粘性係数[m/sec], \(\sigma_{o} \)は、流動 Schmidt 数であり、\(S_A, S_B, S_C[ppm/sec] \)は化学反応により各物質が減少あるいは増加する速度を表す値である。

二分子化学反応の多くが、反応物質の濃度の積に比例した反応速度をもつことが実験的に明らかにされており、本報で扱う反応においても同様に成立しと仮定すれば、それらは次式で表される。

\[
S_A = -S_B = k_A \phi_1 \phi_2
\]

(6)

ここで、\(k_A \)は二次反応速度定数[1/ppm/sec]である。反応速度定数に関するアレニウス則に基づけば、等温場においては温度が一定となるので、温度固定の条件下で(6)式に空間フィルタ操作を施せば、反応速度は次式で表される。

\[
\nabla \cdot \phi_1 = \nabla \cdot \phi_2 = \nabla \cdot \phi_3 = -k_A \nabla \cdot \phi_1 \phi_2
\]

(7)

更に、上式中の \(\nabla \cdot \phi_1 \)は次のように変形できる。

\[
\nabla \cdot \phi_1 = \nabla \cdot \phi_1 + \left[\phi_1 \phi_2 - \phi_1 \phi_2 \right] - \phi_1 \phi_2 \phi_1 + \phi_1 \phi_2 \phi_1
\]

(8)

ここで、ダブル・クオーテーション（“）は、SGS 変動成分であることを表す。SGS における反応物質濃度の変動の相関が与える影響は、GS での変動変動に比べて十分に小さいと仮定すると、(8)式において右边第 1 項を含めた項がほぼゼロとみなせるため、(7)式は、最終的に次式のように近似できる。

\[
\nabla \cdot \phi_1 = \nabla \cdot \phi_2 = \nabla \cdot \phi_3 = -k_A \phi_1 \phi_2
\]

(9)

本解析では、上式を二分子化学反応速度のモデルとして用いる。

2.3 支配方程式のホルン化第 1 Damköhler 数

(3)式で示される k_A に関する輸送方程式に、(6)式の反応速度を代入し、以下に示す条件で無次元化を行う。

代表速度 u[m/sec], 代表長さ d[m], 代表濃度 \(\phi_1[ppm] \)を用いれば、その無次元化方程式は次のようになる。

\[
\frac{\partial \phi_1}{\partial t} + u \cdot \nabla \phi_1 = \frac{\partial}{\partial x_i} \left(D_o + \nabla \text{SGS} \sigma_{o} \right) \frac{\partial \phi_1}{\partial x_i} - D_o \phi_1 \phi_2 \phi_1
\]

(10)
ここで、変数右肩のアスタリスク（*）は、無次元化量であること
を表し、\(\tilde{u} \), \(\tilde{x} \), \(\tilde{t} \) はそれぞれ \(u \), \(x \), \(t \) の無次元化量である。また、\(\tilde{D} \) は次式で定義される第 1 Damköhler 数である。

\[
\tilde{D} = \frac{k_{\text{eff}} \phi_1}{u_\infty} \frac{\tilde{\tau}_f}{\tilde{\tau}_r} \]

2. 4 壁面沈着速度のモデリング

一般的に化学反応は、壁面壁面壁の上で進行するため、結果として壁面沈着現象と呼ばれる膜の低下を引き起こす負のフラックスが壁面壁面壁に存在することになる。この壁面沈着フラックス \(J \) [ppm m/sec] は、壁のごく近傍の物質質量に依存し、気体の分子運動論的見地から次式で表現される。

\[
J_y = -\gamma \frac{v_y}{4} \phi_1 \left| \phi_1 \right| \]

ここで、\(\gamma \) は固体表面に衝突した分子のうち沈着する分子の割合 (reaction probability) を表し、\(\lambda \) は気体分子の平均自由行程 (Ozone の場合、\(\lambda = 6.5 \times 10^{-6} \) [m]程度) である。また、\(\nu \) は Boltzmann 速度 [m/sec] であり、次式で与えられる。

\[
\nu = \frac{8RT}{\pi M} \]

ここで、\(R \) は気体定数 (= 8.3145 [J/mol/K]), \(T \) は絶対温度[K], \(\pi \) は円周率, \(M \) は気体物質の分子量 [g/mol]である。

3. 解析概要
3.1 解析空間

本研究では対象とする解析空間を図 1 に示す。1,500(x) × 300(y) × 1,000(z) [mm] の容積を持ち、吹出し口と吸込み口の寸法を表に 300(y) × 200(z) [mm] である。天井、床及び左右両側壁はステンレス (SUS 304) の、他の面はガラスで構成されている。また、左端から解析空間の x 方向幅 3/4 位置の床面に 10 [mm] (x 方向) の幅を持ち壁面 (Limonene, NO) を設定した。

3.2 解析ケース

本報で解析したケースを表 1 にまとめたものを示す。流入風速として 2.0 m/sec 及び 3.0 m/sec の 2 通りに対し、流入流速と第一 Damköhler 数を以下の表に示した。

<table>
<thead>
<tr>
<th>Case</th>
<th>Inlet Velocity</th>
<th>Reactants</th>
<th>wall deposition</th>
<th>chemical reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>2.0 m/sec</td>
<td>Ozone-Limonene</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2b</td>
<td>2.0 m/sec</td>
<td>Ozone-NO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2c</td>
<td>3.0 m/sec</td>
<td>Ozone-Limonene</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2d</td>
<td>3.0 m/sec</td>
<td>Ozone-NO</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case</th>
<th>Inlet Velocity</th>
<th>Reactants</th>
<th>wall deposition</th>
<th>chemical reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>2.0 m/sec</td>
<td>Ozone-Limonene</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3b</td>
<td>2.0 m/sec</td>
<td>Ozone-NO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3c</td>
<td>3.0 m/sec</td>
<td>Ozone-Limonene</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3d</td>
<td>3.0 m/sec</td>
<td>Ozone-NO</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Property</th>
<th>Ozone</th>
<th>Limonene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>48.0</td>
<td>136.23</td>
<td></td>
</tr>
<tr>
<td>Diffusivity</td>
<td>1.81×10⁻³</td>
<td>6.20×10⁻⁸</td>
<td></td>
</tr>
<tr>
<td>Reaction probability (\gamma)</td>
<td>Glass : 1.1×10⁻⁷</td>
<td>Glass : 4.6×10⁻⁸</td>
<td></td>
</tr>
<tr>
<td>Glass : 1.3×10⁻⁷</td>
<td>SUS 304 : 3.4×10⁻⁴</td>
<td>SUS 304 : 2.1×10⁻³</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Inlet Velocity</th>
<th>Ozone-Limonene</th>
<th>Ozone-NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 m/sec</td>
<td>1.53×10⁻⁵</td>
<td>1.11×10⁻³</td>
<td></td>
</tr>
<tr>
<td>3.0 m/sec</td>
<td>1.02×10⁻⁵</td>
<td>7.40×10⁻⁴</td>
<td></td>
</tr>
</tbody>
</table>
及び3.0[m/sec]の二つを設定する。まず、それぞれの風速に対してOzone-Limonene反応に関して、壁面流着と化学反応とも考慮したケースと、壁面流着のみを考慮したケース、及び両効果ともに組み込んだケースの計3ケースを解析する(Case 2a, 2e, 3a, 3c)。更に、実現象では壁面流着を無視することは不可能であるが、Ozone-LimoneneあるいはOzone-NO間の化学反応のみを考慮する解析を行い(Case 2d, 2e)、化学反応速度定数の違いが与える影響を検討する。また、解析は等温条件下(20°C)で行う。

二つの流入風速 \(u_{in} = 2.0 \) 2.0 3.0 [m/sec]に関して、吹出し幅 \(L_0 = 20 \) [mm]、空気の動粘性係数 \(\nu = 1.05 \times 10^{-5} [m^2/sec] \) を用い、Reynolds数(\(u_{in} L_0 / \nu \))を定義すると、それぞれおよそ 2.7 \times 10^5 \) 4.0 \times 10^5 となる。また、換気回数にすると約 96, 144 [h^-1]である。

3.3 計算条件

LESのSGS応力モデルには標準Smagorinskyモデルを採用し、Smagorinsky定数 \(C_s \) には0.16を用いた。他の詳細な計算条件は表1に示す。特にOzoneは流入風速に3.0[ppm]の一定濃度で含ませ解析空間に供給する。また、LimoneneあるいはNOは表1に示すように流入風速から一様に発生させる。この流量は、伊藤らの実験におけるLimoneneの質量流速流量15.64 [g/sec]に対応する。

3.4 物性値

本解析で用いた物性値は表1に示す。分子量と \(\gamma \) は伊藤の実験値を参照し、これらの変数は壁面流着を考慮する際に必要となるため、この効果を考慮した解析を行わないNOに関しては省略する。また、分子拡散係数に関して、極めて反応性の高いNOは計測が困難であるために利用可能なデータの取得が難しい。そこで、NOと反応性物質であるproductに関しては、Schmidt数 \(Sc = 1.0 \) と動粘性係数を用いて、その分子拡散係数を \(\nu Sc [m^2/sec] \) と仮定し解析を行う。乱流Schmidt数については、全ての物質に対して1.0であるとした。化学反応速度定数 \(k_a \) については、Ozone-Limonene反応で5.1×10^{-3} [1/ppm/sec], Ozone-NO反応で3.7×10^{-3} [1/ppm/sec]を用いる。式(11)式に定義した \(D_a \) に対して、これらの定数と代表速度及び長さに先のReynolds数同様にそれぞれ \(u_{in}, L_0 \) を用いた。また代表濃度を流入風のOzone濃度 \(\phi_{O_3} = 0.3[ppm] \) を採用すれば、その値は表4のようになる。これらの値のオーダーを大きくとるとき、このスケールにおいては濃度変化に関しては流れ場との影響が支配的であることが分かる。したがって、Ozone-NO反応とOzone-Limonene反応の \(D_a \) には10^5程度の違いがあるため、解析領域全体を含む大きなスケールでは、化学反応速度の違いが鮮度場内に与える影響に顕著な差が現れることを予想する。

4. 解析結果

4.1 流れ場

図2に、Case 2aにおける極性方向中央位置の断面内における平均風速ベクトルを示す。なお、本解析では換気回数1回分の時間、計算を繰り返し、各種統計量を算出している。これらを基に、解析領域全体に流れる時計回りの循環流が形成されていることが分かる。また、左右の壁と側壁との内の平均値で2次流の存在を確認した。

図3は、平均風速の(a) x方向成分と(b) z方向成分のプロファイルである。ここで山括弧(\(\dddot{\bullet} \))は、アンサンブル平均値（この場合、時間平均値に等しい）であることを表す。本解析結果に併せて、同対象において伊藤らが計測した実験値(\(u_{in} = 3.0 \) [m/sec])も示している。ただし、いずれの結果もそれぞれの流入風速で無次元化されている。Case 2aとCase 3aの結果を比べると、u, w ともに同様の性状を示しており、異なる流入風速の間に、ほぼ相似といえる風速分布が形成されていることが分かる。また、Case 3aにおける結果は、実験値とも全体を通じて良い整合を示しており、本解析結果における平均風速分布の予測精度を保証するものである。

図4には、図3(a)と同位置における(a) normal stress と(b) Reynolds stress の鉛直分布を示す。normal stressに関して、吹出し口からの噴霧が到達する位置で最大となり、次いで壁近傍で大きな値を示す結果となった。Reynolds stressを見れば、実験値と対応良く、乱れ状態も精度よく再現されていると判断できる。
4.2 平均濃度分布

流入速度が2.0[m/sec]の解析ケースにおける各化学種の平均濃度分布を図5に示す。ただし、全ての濃度はφ_A,inで規格化されている。

壁面沈着と化学反応の両現象の効果を考慮しなければ、一定濃度のOzoneを含む流入気流が全領域に及ぼすことで、領域内のその濃度は、一様にφ_A,in[ppm]となる。そこで、Case 2aについては、Limonene未分布のものを掲載する。図5(i)よりLimoneneは循環流に連れ、線源の後流域で最も濃度が高く、徐々に拡散していく。

図5(ii)を見ると、流入流が空間内を循環するうち、壁に触れることで、壁面沈着により徐々にOzoneを失い濃度低下を生じている。

図5(iii)に示すLimoneneについても、図5(ii)と同様の分布を示しつつも、壁面沈着によって壁面近傍で濃度が低くなり、その結果、領域全体に覆って著しい濃度低下が見られる。

図5(iv)〜(v)は、壁面沈着に加え化学反応の効果も考慮した結果であり、OzoneとLimoneneともにCase 2bの結果よりさらに濃度が低下している。特に、Ozoneに関しては、滞留時間が長いと思われる解析領域中央部で濃度が低くなっており、反対にproductはここ

4.3 平均濃度プロファイル

Case2a〜2c及びCase 3a〜3cにおける解析領域中央位置での平均濃度鉛直プロファイルを図6に示す。線で示されているのが本解析結果であり、点は伊藤らによる実験値である。いずれの流入速度においても、OzoneとLimoneneともに、壁面沈着や化学反応の効果が加わることで全体の傾向として濃度が低下していく様子を再現できている。また、流入速度が3.0[m/sec]の場合は、2.0[m/sec]のものに比べ同量のLimonene発生量を持つものの、換気回数が多くためにLimoneneの濃度は低くなっている。その結果、Ozoneの濃度低下も小さなものとなった。

また、図は省略するが、本解析結果は伊藤ら行った低Reynolds数型k-εモデルによる解析結果ともほぼ同様の傾向を示す結果となった。この理由として、詳細は第5章に譲るが、OzoneとLimoneneを用いた解析では、濃度分布の非定常性の与える影響が、極めて小さいことと考えられる。

図6の(ii)〜(vi)を見ると、実験値と比較して、化学反応による
図7 Ozone 濃度の平均値と変動強度（Case 2d, 2e, y=7.5L0）

図8 Limonene/NO 濃度の平均値と変動強度（Case 2d, 2e, y=7.5L0）

図9 product 濃度の平均値と変動強度（Case 2d, 2e, y=7.5L0）

5. 化学反応の平均値に関する考察

5.1 RANSにおける化学反応速度式的取り扱い

本解析では、流れモデルに LES を用い、風速及び濃度の時間変動を適切に考慮しながら化学反応を考慮することの基本的な方法を検討した。しかし、LES の計算負荷の高さを考慮すると、今後の計算機資源の増大が前提である。今後、この検討を進めるためには、LES モデルの改良が不可欠である。
5.2 化学反応の平均値に含まれる誤差の推定

まず、相互相関の項のずれがどれだけの平均的な化学反応速度に生じさせるか把握するため、次式の誤差指標 $E_r(x, y, z)$ を用いる。

$$ E_r(x, y, z) = \frac{\langle \phi \rangle - \langle \phi \rangle}{\langle \phi \rangle} $$

本解析では、等温条件下で化学反応速度定数を一定として扱っているため、上記の式が濃度変動の相関を無視した際に、平均反応速度に含まれる誤差の指標となる。これにより、全体スケールの濃度変動の影響を考慮しなくてもならない。本解析では LES の結果を用いるため、GS の平均値を用い、近似的だが測定を扱う。

図10にCase 2eにおける E_r の分布を示す。Inlet と縦断面近傍で-20%近くの大きな負の値を示し、この領域での大きな誤差が生じる可能性があることを示唆する。一方で、この分布図は割愛するが、Case 2d においては分布傾向はCase 2e と同様であるものの、領域全体を通じて±1%以内という大変小さい値に収まる結果となった。この点に関しては後節にて議論する。

5.3 反応物質濃度の時間的変動における相互相関

次式で示す。二分子反応を起こす物質同士の濃度時間変動における相互相関係数 $\rho_{ab}(x, y, z)$ を考える。

$$ R_{ab}(x, y, z) = \frac{\sum [\phi_a - \langle \phi_a \rangle][\phi_b - \langle \phi_b \rangle]}{\sqrt{\sum [\phi_a - \langle \phi_a \rangle]^2 \sum [\phi_b - \langle \phi_b \rangle]^2}} $$

ここで、右辺の全ての変数は位置(x, y, z)のもので用いるとし、Σ は各点におけるサンプル数の和をとるものとする。

図11にはCase 2eにおける R_{ab} の分布である。一見して分かるように、符号の正負や絶対値の大小に違いがあるもの、全領域において反応物質濃度の時間変動は互いに無相関ではない。よって、変相関の相関係数は化学反応のモデル化において容易に無視できないことと分かる。特に、流入流の流れ方で大きな負の相関を示しているが、これは、濃度の解析条件設定から流入流と解析領域内空気との混合が促進するとともに、ϕ_a は低下し ϕ_b は増加する、といった現象の帰属であるとも考えられる。

5.4 反応物質濃度の確率密度分布

前節で、反応物質の濃度の時間変動は、化学反応速度定数の大小に拘らず解空間全体を通して互いに相関を持ち、特に流入口近傍で大きな負の相関をもつことを明らかにした。一方で、5.2節で論じた誤差推定では、Case 2e と比較してCase 2d では、化学反応の平均値に対する相互相関の影響が極めて小さくなることを示した。そこで本節では、この要因に関して考察を行う。

相互相関係数の定義から、次の関係が導かれる。

$$ \rho_{ab}(x, y, z) = R_{ab} \times \sigma_{\phi_a} \times \sigma_{\phi_b} $$

ここで、a は変数 i の標準偏差を表す。

図12は、Case 2d 及び 2e での点$(x, y, z) = (18.5L_o, 7.5L_o, 48.5L_o)$ の位置における反応物質濃度の確率密度分布である。これから、Case 2d のOzone 濃度の変動は、同ケースでのLimonene やOzone-NO における年反応物質に比べ、一桁オーダーが小さいことが分かる。これは、Ozone を流入流に一定濃度まで解解析領域に供給し、かつ化学反応速度定数の小ささから、解析領域内において均一な濃度
分布を生じやすい解析条件であったためであると考えられる。これと併せて(18)式を見れば、Case 2d で濃度変動の相互相関が強い領域においても、各物質の流れの向きから結果的に化学反応速度にお
ける変動相関項の影響が小さくなったことが理解できる。

6. 結論
都市空気の大気汚染解析において重要な現象である乱流中の化学反応の特性を把握するため、2 次元流れ場をもつ閉空間内にお
いて、Ozone-Limonene あるいは Ozone-NO の二成分化学反応をモデ
ル化し、LES を用いて数値解析を行った。また、Limonene を対
象とした解析では、壁面沈着現象をモデル化し解析に組み込み、既
往の実験結果との比較を行った。
実験値との対応は、Limonene に対する化学反応による濃度減少
効果にやや過評価の傾向が見られるが、濃度分布の定常性状は
再現できており、化学反応と壁面沈着現象のモデルが妥当な予測精
度を有していることを確認した。
また、異なった大きさの化学反応速度定数をもつ２種の化学反応を
対象とした解析を行った。それらの結果から建築スケールの濃度分
布の決定に、この速度定数が大きく関わることを明らかにし、大気
汚染物質の発生量もさることながら、その物質種によって発生後の濃
度変化に大きな差異が現れることを示した。
更に、LES による解析結果を用いて、化学反応の効果を RANS
モデルに組み込む際問題となる反応物質濃度の時間変動相関項に関
して考察を行った。さらに、化学物質発生源の物理的配列や、化学
反応速度の違いによって影響度にばらつきはあるものの、本解析条
件下でも、Ozone と NO の反応を検討したケースにおいて、局所的
には反応物質の濃度変動相関が平均化学反応速度の 2 割程を担っ
ていることを報告した。従って、更に大きなスケールでの大気汚染
解析においては、この相互関連の省略が多大な予測誤差の要因と
なることが予想され、より普遍的なモデルを開発する上では、欠か
すことのできない観点であると結論づけられる。
なお、本解析では化学反応速度のモデル化の際に、SGS での濃度
変動の影響を無視できるものとした。しかし、都市域を対象とした
LES では、この仮定の妥当性を保証し得る方法の選択解像度を確保す
ることは必ずしも容易ではない。従って、この観点に関しては
LES においても、化学反応のモデリングに更なる検討課題が残ること
に言及し、今後のまとめる。

注
1) 本報では、特に断らない限り濃度単位として体積分率 (ppm) を用い
る。これは、二成分化学反応速度が反応物質のモル濃度に比例する
ものであり、体積分率を用いた表示がこれと整合するためである。
2) 壁面速度 (wall unit) u* とは、壁面からの距離 y* と壁面摩擦速度
 (friction velocity) u’の積であり、動粘性係数 νの 1/3 乗を用いて定義さ
れる無次元距離 (y*/νu’)である。

参考文献
1) 環境省：平成 21年度環境・循環型社会・生物多様性白書, 2009
2) 根野泰之：都市大気における光学化学シグマント問題の新展開, 生活衛
生, 50, 3, pp.115-122, 2006
3) 上原清：交差点周辺の大気汚染濃度分布に関する風洞実験 市街地にお
ける汚染物の拡散に関する実験的研究 その 1, 日本建築学会計画系論
文集, 485, pp.25-34, 1996.7
4) 上原清, 村上 崇, 老川進, 若松伸司：温度成層流中のストリートキャ
ニオン内の大気汚染に関する風洞実験 市街地における汚染物の拡散に
に関する実験的研究 その 3, 日本建築学会計画系論文集, 499, pp.9-16, 1997.9
9) 伊藤一秀: 乱流場におけるオゾン/モノタレニン反応量の測定と二成分反応
モデルによる数値解析, 日本建築学会環境系論文集, 607, pp.51-58, 2006.9
13) 加藤信介, 村上 崇, 童田守, 水谷雄雄: LES による室内気体解析－
Smagorinsky 定数の最適化に関する検討－ 第 6 回生研 NST シンポジ
ウム, pp.41-44, 1991
17) 伊藤一秀, 加藤信介, 村上崇: 拭気効率指標の数値解析検証用の 2 次
元気体気流実験, 日本建築学会計画系論文集, 534, pp.49-56, 2000.8

(2009年12月10日属稿, 2010年4月6日採用決定)