A method of measuring sound environment in terms of types and frequency of environmental sound was developed in this study with the aim to establish methodology of semantic description of sound environment. Unit time for recording frequency of sound events was examined and 20 seconds was found to be optimum. A method of classification of environmental sounds based on the impression of listeners, using multi-stage grouping and cluster analysis, was introduced. Finally, the effectiveness of the method was examined with investigation in five urban parks and the result well captured the different characteristics of each of the parks.

Keywords: Sound environment, Semantic description, Soundscape, Audible time ratio, Measurement
筆者らは本村の記述手法をベースに，環境音の類型化手法と聴取頻度の数値化手法を検討し，これまで店舗およびアーケード街路の環境音を取り上げてその有効性を示してきたが，この２つの研究においては，研究対象の音環境の特徴の把握を中心に論議しており記述手法そのものについて深く論議していない．そこで，本研究は意味論的な音環境の記述手法に焦点をあて，既往研究のデータも使いながら都市空間に関する調査データを新たに加えて，記述手法の確立に向けた検討を行うことを目的とする。

2．本研究における記述手法の概要と論点

ここでは次章以降の各節の検討に先立ち，本研究で提案する音環境の意味論的な記述手法の概要を示すとともに，適宜既往の研究を振り返りながら議論すべき点についてまとめておく．手法は環境音の聴き取り調査，聴取頻度の数値化，環境音の類型化の３つの項目からなる．

聴き取り調査とは，調査員が調査現場において聞こえてくる環境音の種類と頻度を記録するものである．本研究中の店舗の環境音のときに，現場での聴き取り調査が難しくない環境音を対象とした調査後に聴き取ることを行っている．1両の調査回数は，短すぎると単発的な環境音が記録されない可能性があるため，長すぎると調査者の負担が大きくなる．これについては，これまでの調査から経験的に調査開始時に1時間毎に10分間のデータを記録することとしている．また，複数地点の調査を1日で実施する場合は，10分間の調査後，次の地点へ移動・準備し，新たに10分間の調査後，また次の地点へ移動・準備を繰り返すことで，1時間あたり3地点程度の調査を実施することが可能である．調査において，調査員は聞こえてきた環境音について主観を交えない機械的な記録に専念することが求められる．環境音の種類については聴き取り調査の時点ではできるだけ細かく書き分けることが推奨される．理由は，たとえば同じ鳥の鳴き声ならパルとカラス，車の音ならば一般車両と暴走族，人の声ならば大人の声と子供の成長する声など，それぞれ区別されるが異なると考えられること，そのうえ個々の環境音の中には音場・地域特有のものが含まれることがあることである．

聴取頻度の記録においては，時間帯を10秒といった単位時間に分割し，その時間内で聴取されたかどうかをチェックする方針とした．それに基づいて調査時間内における環境音の聴取された時間帯を「可聴時間率（ATR：Audible time ratio）」1)と定義し，頻度を表す指標と位置づけた．可聴時間率は下式のように定義される．

\[
ATR(i) = \frac{\sum_{j=1}^{m} X(j) \times 100}{\text{時間帯}} \quad \% \quad (1)
\]

\(i \) はある環境音を，\(m \) は測定時間の単位時間で区切ったときの総分割数を示しており，\(X(j) \) は測定開始から \(j \) 番目の単位時間で環境音 \(i \) が聴取されたかどうかを示す．たとえば10分間（600秒）の聴き取り時間を単位時間10秒に分割しと60秒の時間区

環境音の類型化についても聴き取り調査では環境音の種類についてできるだけ細かく書き分けることを推奨しているが，これはたとえば地域や季節特有の環境音などを見いだすことに効果的な一方で，音環境の全般的な特徴を把握し他の地域と比較することは困難である．従って，環境音について，鳥や虫の鳴き声を「自然の音」，バス，トラック，軽自動車などを「道路交通音」とするなど，多様な音の種類について何らかの類型化を行い，類型毎に集計を行うことが有用と考えられる．

以上が手法の概要である．これを前提に，議論すべき点を以下に挙げる．

1）頻度の記録における単位時間

聴取頻度の記録については，前田ら7)による5分間の調査時間中に「何回聴こえたか」といった数値の記録の例があるが，これは鳥の声など単発音には有効であるが幹線道路の交通音や秋の虫の声といった連続音では調査時間中に1回，とつぜん音がしないものなど有効とは言えない．そこで，本手法では時間帯を分割して頻度を記録する手法を採用している．この分割における単位時間はできるだけ時間的な解像度の点から望ましいが，短すぎるとき調査者の記録が追いつかないが，また長すぎるとき解像度が低下した，たとえば単位時間を1分とした場合，1分に1回聴こえた音と10回聴こえた音が同じ扱いになるなど，音環境の識別が低下することになる．また，算出される可聴時間率は単位時間によって値が変わるため，将来の比較検討のために，手法の提案にて都合上適切な単位時間につい

2）環境音の類型化

環境音の類型化について，本村3)は都市空間の音環境の計画・評価を念頭に先駆的に環境音の類型化を検討し，自然音，メディア音など各々の類型を提案した．また，藤本ら4)や小川5)，渡辺ら6)は，木本ら7)は環境音の類型をみることができる．これらの類型は研究のコンセプトに応じて研究者によってそれぞれ解釈されるもののため，研究者の判断のみでは人々の評価を取り入れることは，類型の妥当性のために重要と考えられる．また成果の比較検討を通じた今後の研究の進展のためには，どのような観点に基づき，どのような類型を用いるべきか議論を深める必要がある．筆者らは類型化の観点として環境音から印象が近いことを主たる判断基準をとることを提案した．これは，意味論的な記述が適用されるべき環境音計画が，環境音の取捨選択による空間の雰囲気作りといった，その空間に存する人々がどう感じているかという一面を基本的な対象とすることで理由である．さらに，筆者ら7)は環境音の印象評価の構造が空間の性格によって異なることを示したが，これにより環境音の類型を対象とする空間に応じて構成することが望まれる．

以上を踏まえ，筆者らは主観評価実験を通じて環境音への印象に基づいた環境音類型を構成するための手法を考察し，既往の調査に適用した形で検討しておらず，4章で改めて具体的な手続きを含めて提案するとともに，既存のデータに加えて都市公園での聴き取り調査データを併せて，第5章で本手法の有用性について議論する．

３．単位時間が聴取時間に与える影響

聴き取り調査における単位時間について，過去の筆者らの研究では単位時間を10秒として実測調査を行った．しかし実際のそれは
調査者にとって記録の限界といえるもので、余裕がなく環境音を聴き過ごしてしまう懸念もあった。

そこで、より長い単位時間で同様の情報を記録できる可能性を探るため、筆者らの過去の店舗空間とアーケードの街路空間での調査5)で得た単位時間10秒で記録された音環境データ（表1）を基に、図1のように接触する時間帯を単位時間20秒と30秒。60秒とし、その場合のデータを作成して可聴時間率を算出し、対象時間10秒での値と比較した。分析対象は、店舗空間が熊本市内の大規模店舗をすべてを対象とした152の店舗を等速度で巡回しながら録音したものです。調査時間は売り場の広さに応じて別々に70～1030秒である。アーケード街路は熊本市と長崎市のアーケードの計6地点で7時～22時に毎時10分間の聞き取り調査を実施した計94回の録音である。これらについて類型毎に可聴時間率を求めた。可聴時間率を求めるにあたり、次章で述べるそれぞれの空間に対応した環境音類型を用い（表3、4）、類型毎に値を算出した。

単位時間時間を変化させたときの環境音類型（アーケード街路の交通・工事音）の可聴時間率の推移を図2に示す。図からわかるように、結合によって単位時間が長くなると可聴時間率は必然的に増大する方針に推移する。それが100％となり、いわば飽和してしまうと、それまで頻度に応じて変動していた可聴時間率の情報が失われることになる。具体的には、単位時間10秒の観測において音が聞きえなかった時間（X(j)=0 の時間区切り）が6データ（60秒）を割り振る。各データに10秒以上の観測音がもしかたない限り、単位時間60秒で観測すると可聴時間率は必然的に100％に飽和する。例えば図2の13時計の変化において、単位時間10秒の観測の結果（10分間 = 60データ）、音が聞きえなかった時間帯は12回現れ、そのうちも発動の1データのみ6回、その数を連続的に3データ（10秒）であった。こうした短縮的な発生パターンは、単位時間が長くなることに可聴時間率は増大する結果をもたらすことになる。そこで、単位時間10秒としたときの可聴時間率を目標値、単位時間20秒と30秒、60秒の可聴時間率をそれぞれ変動数とする単回帰分析を行い、どこまでの単位時間ならば情報が捉えられているのかについて検討した。

![図2 単位時間の変化より可聴時間率が飽和する例（街路調査、類型：AF（交通・工事音））](image)

結果として、単位時間20秒では、どの環境音類型においても寄与率が1.0以上であり、0.9以上の環境音類型が7種あった（表2）。すなわち可聴時間率の絶対値には差があるものの、単位時間20秒の可聴時間率は単位時間10秒のもとはほぼ同等の情報量を持っていることを示している。単位時間30秒の可聴時間率の寄与率は、0.8以下の類型が4つみられた。このうち3つの類型（SA、SB、AC）は単位時間10秒でも可聴時間率が80％程度あり、それが単位時間長くすることで100％に飽和したものである。他方、類型AB（特別な街路音）は可聴時間率が11％と低いにもかかわらず寄与率が小さいが、これは具体的には店舗の風の音が、ある程度間で風により定常的に音が発生したものであるためである。数値データの比較により、特定の単位時間10秒と20秒では差が小さい。また、単位時間60秒の可聴時間率の寄与率はどの類型においても0.8以下、最も小さいもので0.16であり、単位時間10秒と比較して情報が大きく失われたといえる。以上より、単位時間を20秒としても記録の精度において10秒としたときとそれほど違いがない一方で、30秒以上すると明らかに情報が損なわれる様子が見られた。ここでは街路・店舗空間を表1 使用するデータの概要

<table>
<thead>
<tr>
<th>調査対象</th>
<th>調査回数</th>
<th>調査時間 [s]</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>店舗空間</td>
<td>152</td>
<td>70 ～ 1030</td>
<td>録音</td>
</tr>
<tr>
<td>アーケード</td>
<td>94</td>
<td>600</td>
<td>現場</td>
</tr>
</tbody>
</table>

![図1 各単位時間データの作成例](image)

![図2 単位時間の変化より可聴時間率が飽和する例（街路調査、類型：AF（交通・工事音））](image)

表2 単位時間10秒での可聴時間率平均値と他の単位時間による回帰分析の寄与率

<table>
<thead>
<tr>
<th>可聴時間率</th>
<th>寄与率</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均値(10s)</td>
<td>10s～20s</td>
</tr>
<tr>
<td>SA</td>
<td>78％</td>
</tr>
<tr>
<td>SB</td>
<td>86％</td>
</tr>
<tr>
<td>SC</td>
<td>18％</td>
</tr>
<tr>
<td>SE</td>
<td>60％</td>
</tr>
<tr>
<td>SF</td>
<td>95％</td>
</tr>
<tr>
<td>SG</td>
<td>13％</td>
</tr>
<tr>
<td>AB</td>
<td>11％</td>
</tr>
<tr>
<td>AC</td>
<td>83％</td>
</tr>
<tr>
<td>AD</td>
<td>35％</td>
</tr>
<tr>
<td>AF</td>
<td>53％</td>
</tr>
<tr>
<td>AG</td>
<td>12％</td>
</tr>
</tbody>
</table>

※類型は表3と表4を参照
環境音の類型化手法

環境音からうかういが近いという基準による環境音の類型化の手法について述べる。これは既報11)で提示した環境音の評価構造に関する実験手順の一部であり、以下の要領で行う。

1) 環境音カードの作成

対象とする空間で聴取できる環境音を網羅するように選んだ40～50種類の環境音について、音の名前（自動車の走行音、風の音、など）を記入したカードを作成する。カードは以降のグループ分け作業に用いるのでやや厚めで小さい紙片を用いるのがよい。使用する環境音の選択のためには、たとえば聴き取り調査によって記録された環境音の種類を素材とするのが一つの有用な手段と考えられるほか、居住環境におけるアンケート13)にて挙げられた音を用いることも可能である。聴き取り調査の結果を用いる場合、二百種類といった多様な環境音が記録されることもあるが、これらは予備的に2)と同様な分類作業を行うことにより数回減らしておきたい。

2) 環境音カードの分類実験

ここでは既往の店舗空間とアーケード通りに加え、都市公園に関する環境音の分類実験について述べる。被験者は店舗空間では20歳代の学生25名（男18名、女7名）で、アーケード通りでは21歳から37歳の29名（男22名、女7名）、都市公園では10歳代～20歳代前半の学生20名（男10名、女10名）ある。

実験にあって、被験者は実際に環境音を聞くのではなく、1)の環境音の名前が書かれたカード群を受け取る。用いた環境音は各空間で聴取される音を網羅した50種である（図3-図5）。各被験者はたとえば店舗空間ならば「店内で買い物をしている」状況、アーケード通りならば「街歩きをしている」状況、都市公園ならば「公園内でのんびり座っている」状況が示され、各環境音が聞こえきめた状態を想像し、そのイメージ上の環境音について「音から受ける全体的な印象が近いもの」という判断基準で類型化を行う。被験者記憶上のその環境音の典型的な印象をとらえようとして、実際に環境音を聴かせる必要はないと考えられる。

分類の手順はKJ法14)などで用いられる「多段階グループ編成」を準用する。すなわち、まず被験者はカード全体を見渡してそれぞれについて考えてきた状況をイメージし、近いもの同士をグループにする。このとき一度に行うのではなく、まずもっとも印象の近いものがグループ化され、グループ化された環境音をまとめて代表的な名前をラベルとして付与し一つの環境音と見なす。次段階でまた印象の近い環境音をグループ化し、ラベルを与える。これを繰り返し、最終的に6段階となるまで環境音の類型を作成させた。この最終的なグループ数をいくつかすべきというものは決まっていないが、これが少ないと被験者が印象があまり近くない音事象群を無理に一つのグループにしたくではなく、多いほど一巡目でおかれたグループ化がなされて二巡目以降の作業が安易になりがちな傾向がこれまでの経験から想定される。そこで被験者にある程度の負荷を感じる程度の作業として、音事象40～50段階ならば5～6段階を目安としているが、これも予備実験などの検討を通じて増減することも考慮してよいと考えている。環境音の類型化のみならずここまでで可能であるが、ここで分類の判断基準となった印象の違いについて被験者から印象表現を得ておくと、相対的分類分析によってそれぞれの環境音から受ける印象の種類を分析することが可能である15)。

3) 分類結果の分析

実験の結果、グループ化された環境音群ができるが、そこから各被験者について環境音群の類似度を求める。すなわち、ある音と
ある音が同じグループに分けられていたならば類似度 1，そうでなければ 0 として，被験者毎の環境音の類似度行列 \(a_{ij} \) を作成する（\(i，j \) は環境音番号，\(k \) は被験者番号を表す）。その後，被験者毎の類似度行列 \(a_{ij} \) について被験者全員の和をとることで，分析に用いる類似度行列 \(A_{ij} = \sum a_{ij} \) が得られる。この類似度行列についてクラスター分析や多変量分析法等の多変量解析を用いることで，環境音を分類できる。ここでは具体的にいくつかの分類することが必要なので，階層型クラスター分析（平均距離法）を行った。

この結果，店舗空間，アーケード街区，都市公園についてそれぞれ図 3，図 4，図 5 のクラスターが形成された。これらについて，7～8 個程度のクラスターとなるように極端な京都を適当な類似度で細引きして切り分け，複数の環境音から構成されるクラスターに名称を付した。結果として，店舗空間では人間や設備機器，拡声，自然，外から聞こえる音，案内，売店，飲食コーナー，調理の音，交通・工事の 7 つの類型が，アーケード街区では自然やイベント・音楽，拡声，人間，店舗，地域，交通・工事の 7 つの類型が，都市公園では拡声，交通・工事，都市，音楽・店舗，人間，自然，地域の 7 つの類型が得られた。

4) 環境音類型の決定

ここで得られた環境音のクラスターは，音から受ける印象に基づいたものであるが，たとえば実際の空間の音環境デザインを考える上では，音の意図的な付加やその季節毎の演出など，計画論的視点を類型に反映させることも必要と考えられる。従って，実験で得られたクラスターをそのまま使いのとらないで，計画者の視点からクラスターを分割・併合するなどの加工をある程度行ってもよいものとして，最終的な類型を決定する。今回の実験結果については筆者らの判断に委ねて細分化など改編を行い，表 3～5 に示す環境音類型を決定した。改編内容について店舗空間の例を以下に述べる。音楽・拡声，案内・売店，および噴水や風鈴の音といった自然の一部という，店舗側が意図した音のクラスターを一体に扱い，それらを拡声音と特別な音の 2 類型とした。これは，近年みられるようになった商業空間の音環境的な演出 [15~18] と，従来から多くの店舗に見られるような有線放送やエンドレスタップ等の音源を用いた拡声音とを区別したいと考えたからである。ここで，クラスターの併合に

<table>
<thead>
<tr>
<th>環境音名</th>
<th>クラスター名</th>
</tr>
</thead>
<tbody>
<tr>
<td>緑音</td>
<td>自然</td>
</tr>
<tr>
<td>噴水の音</td>
<td>自然</td>
</tr>
<tr>
<td>くいさの音</td>
<td>自然</td>
</tr>
<tr>
<td>呼吸の音</td>
<td>自然</td>
</tr>
<tr>
<td>ストリートミュージシャンの音楽</td>
<td>音楽</td>
</tr>
<tr>
<td>インテリアの音楽</td>
<td>音楽</td>
</tr>
<tr>
<td>路面のクラッタースキップ</td>
<td>揚声</td>
</tr>
<tr>
<td>荷物の音</td>
<td>揚声</td>
</tr>
<tr>
<td>展示されている TV の音（店内）</td>
<td>揚声</td>
</tr>
<tr>
<td>ガイドラッパ音（店内）</td>
<td>揚声</td>
</tr>
<tr>
<td>アーケードの BG
BGM（店内）</td>
<td>揚声</td>
</tr>
<tr>
<td>お買い物音（店内）</td>
<td>揚声</td>
</tr>
<tr>
<td>店内での店員の応え声</td>
<td>揚声</td>
</tr>
<tr>
<td>喜びの声</td>
<td>自然</td>
</tr>
<tr>
<td>人の笑い声</td>
<td>自然</td>
</tr>
<tr>
<td>人の会話声</td>
<td>自然</td>
</tr>
<tr>
<td>人の声</td>
<td>自然</td>
</tr>
<tr>
<td>音楽</td>
<td>音楽・店舗</td>
</tr>
<tr>
<td>商店の音</td>
<td>音楽・店舗</td>
</tr>
<tr>
<td>店舗の音</td>
<td>音楽・店舗</td>
</tr>
<tr>
<td>店舗内での店員の声</td>
<td>音楽・店舗</td>
</tr>
<tr>
<td>ストリートミュージシャンの音楽</td>
<td>音楽・店舗</td>
</tr>
<tr>
<td>人の話声</td>
<td>自然</td>
</tr>
<tr>
<td>結婚の音</td>
<td>自然</td>
</tr>
<tr>
<td>鰐の音</td>
<td>自然</td>
</tr>
<tr>
<td>店舗</td>
<td>店舗</td>
</tr>
<tr>
<td>校舎</td>
<td>店舗</td>
</tr>
<tr>
<td>学校のチャイム</td>
<td>店舗</td>
</tr>
<tr>
<td>橋梁の音</td>
<td>店舗</td>
</tr>
<tr>
<td>車の走行音</td>
<td>車の走行音</td>
</tr>
<tr>
<td>車の走行音</td>
<td>車の走行音</td>
</tr>
<tr>
<td>車の走行音</td>
<td>車の走行音</td>
</tr>
<tr>
<td>スケートボードの音</td>
<td>車の走行音</td>
</tr>
<tr>
<td>交通・工事</td>
<td>車の走行音</td>
</tr>
<tr>
<td>地域</td>
<td>車の走行音</td>
</tr>
</tbody>
</table>

図 4 環境音のクラスター（アーケード街区）

図 5 環境音のクラスター（都市公園）
ついては、印象が近いとは限らないものを同じ類型にまとめると操作であり、一般には避けるべきものである。ここでは「特殊な音」という類型がこれに当たるが、先述のように、計画論的に重要と考えられる音象事をまとめるもので、一つの類型として扱うという意味ではなく、詳細に把握するために取り上げた、という位置付けである。

結果として、店舗空間では人の音と拡声音、特殊な音、自然音、設備音、地域音、交通・工事音、その他の計8類型を、アーケード街道では街路音と特別な街路音、通行音、店舗音、地域音、交通・工事音、自然音、その他の計8類型を、都市公園では自然音（生物）と自然音（無生物）、人の音、地域音、街の音、交通音、工事・機械音、その他の計8類型を決定した。

5. 本手法の適用例

ここでは本研究が提案する記述手法による、環境音類型に基づく聴取頻度の数値化の有効性について検討する。既報においては、店舗空間では店舗の音響特性の変動を検討するにあたり、環境音類型の可聴時間率プロファイルに店舗の騒音による構文が示された。アーケード街道では疑わしい環境音類型の可聴時間率とアーケード街道の利用者や店舗の活動の関連を探査する。店舗空間とアーケード街道における有効性を示した。本報ではこれに引き続いて、都市公園の音環境をとりあげ、性格の異なる5つの公園について環境音の特性がどのようにとらえられるかを検討する。

調査対象は熊本市内の5種の公園（表6）である。調査地点数は各公園で3地点とした（公園IIIのみ2地点）。調査は公園の利用状況を考え、いずれも午前9時から午後5時まで、時間10分間、単位時間を10秒として聴取される環境音を記録した。得られたデータを表5に示す環境音類型に基づいて可聴時間率を算出した。各環境音類型の可聴時間率の時刻変動を図1～Vの別に図6に示し、以下に公園ごとに音環境の特徴をみていく。

・公園1では、一日を通じて自然音（生物）の可聴時間率がどの地点でも100%に近く、自然豊かな公園であることが表れている。また、自然音（無生物）が14時～16時にかけて大きくなくなっているが、この原因はこの時間帯に強い風が吹いたことにによる葉音である。またの音が100%に達する場合はみられ、利用者数の多い公園であることも表れている。一方で公園1の比較として交通音が100%に達することは少なく、交通音から少し離れた場所の音環境を反映している。

・公園2は国立公園であり、交通音の可聴時間率が100%であった。鳥の声など自然音の可聴時間率は公園1よりもやや低いがこれについては交通音にマスクされたことが考えられる。

中には、音の高音が高く、測定時刻が短かったため、被験者が高音が高く、利用者数が頼らしくないものがある。

表3 環境音の類型（店舗空間）

<table>
<thead>
<tr>
<th>類型</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>人の音</td>
</tr>
<tr>
<td>SB</td>
<td>拡声音</td>
</tr>
<tr>
<td>SC</td>
<td>特殊な音</td>
</tr>
<tr>
<td>SD</td>
<td>自然音</td>
</tr>
<tr>
<td>SE</td>
<td>設備音</td>
</tr>
<tr>
<td>SF</td>
<td>地域音</td>
</tr>
<tr>
<td>SG</td>
<td>交通・工事音</td>
</tr>
<tr>
<td>SH</td>
<td>その他</td>
</tr>
</tbody>
</table>

表4 環境音の類型（アーケード街道）

<table>
<thead>
<tr>
<th>類型</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>街路音</td>
</tr>
<tr>
<td>AB</td>
<td>特別な街路音</td>
</tr>
<tr>
<td>AC</td>
<td>通行音</td>
</tr>
<tr>
<td>AD</td>
<td>店舗音</td>
</tr>
<tr>
<td>AE</td>
<td>地域音</td>
</tr>
<tr>
<td>AF</td>
<td>交通・工事音</td>
</tr>
<tr>
<td>AG</td>
<td>自然音</td>
</tr>
<tr>
<td>AH</td>
<td>その他</td>
</tr>
</tbody>
</table>

表5 環境音の類型（都市公園）

<table>
<thead>
<tr>
<th>類型</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>自然音（生物）</td>
</tr>
<tr>
<td>PB</td>
<td>自然音（無生物）</td>
</tr>
<tr>
<td>PC</td>
<td>人の音</td>
</tr>
<tr>
<td>PD</td>
<td>地域音</td>
</tr>
<tr>
<td>PE</td>
<td>街の音</td>
</tr>
<tr>
<td>PF</td>
<td>交通音</td>
</tr>
<tr>
<td>PG</td>
<td>工事・機械音</td>
</tr>
<tr>
<td>PH</td>
<td>その他</td>
</tr>
</tbody>
</table>

表6 調査した都市公園の概要

<table>
<thead>
<tr>
<th>公園名</th>
<th>面積[ha]</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>8.8</td>
<td>熊本城の一角にある緑地公園。朝はジョギング利用が多く、昼以降は子連れ利用が多い。幹線道路が隣接。</td>
</tr>
<tr>
<td>II</td>
<td>2.0</td>
<td>中心部街町に近い緑地公園。国道に面している。利用者は多くないが、昼以降は子連れ利用等の割合が高い。</td>
</tr>
<tr>
<td>III</td>
<td>0.3</td>
<td>中心部街町にある公園。公園の三方を道路に囲まれ、公園内に噴水がある。地盤は舗装されている。</td>
</tr>
<tr>
<td>IV</td>
<td>65.3</td>
<td>中心部街町から離れた緑地公園。公園内に湖があり敷地内に遊歩道が併設されている。</td>
</tr>
<tr>
<td>V</td>
<td>29.6</td>
<td>中心部街町から離れた緑地公園。国道のバイパスに面している。公園内に湖がある。</td>
</tr>
</tbody>
</table>
図6 環境音類型の可聴時間率の時間変動

(無生物)が100%となっている。交通音は一日を通じて高い値である。人の音や街の音は夕刻以降が高い傾向にあり、繁華街に近いことが表れている。

- 公園IVでは、地域音および街の音の可聴時間率が小さく、自然音(生物)の値が高いなど、市街地から離れた位置に立地していることが表れている。地点Cでは自然音の値が小さいが、これは広場的な空間で人の音が主な音事象であることが表れたものと思われる。

- 公園Vでは、公園IVと同様に市街地から離れた位置に立地していることが地域音、街の音に表れている。自然音はどの地点でも高く、自然豊かな公園であることが表れているが、午前中の工事・機械音(湖における除藻作業音)の時間帯はやや値が下がった。午後に地点Aで値が下がっているがこれは人の音の増加もあるがまだまだ自然音がなかった時間帯である。人の音は地点間で異なっているが、最も可聴時間率が小さい地点Aでは、公園利用者が出入るために通行するのみで、その場の滞留者が少ないことが表れている。交通音も地点間で異なっており、この差は道程からの距離による。

以上のように、性格の異なる公園毎の音環境の特徴やその時間的変化と、環境音類型に基づく可聴時間率との明確な対応が求められている。本手法の有効性が確認できたものといえる。

6. まとめ

環境音が持つ意味に着目した音環境の記述手法について、本報告では可聴時間率を用いた聴取頻度の数量化手法と、聴取者の印象に基づく環境音の類型化手法の妥当性について検討し、都市公園における環境音聞き取り調査によってそれらの有効性を示した。得られた結果をまとめると以下の通りである。

1) 環境音の聴取頻度を記述する際に用いる単位時間について、各単位時間での可聴時間率間の寄与率を算出することにより、単位時間20秒が10秒と通色な情報量を保持しているが、単位時間30秒と60秒については、情報量の損失が大きく、妥当な
単位時間とはいえないことを明らかにした。

2) 聴取者の印象評価に基づく環境音の類型化手法について、多段階ブーム組成法とクラスター分析を用いた手法を提案した。本手法により導出された空間毎の環境音クラスターに基づき、設計者の視点を加えた環境音類型の作成手順を示した。

3) 提案した環境音類型と可聴時間率を用いた音環境記述手法の有効性について検討するため、都市公園を対象とした実測調査を行った。結果として、各都市公園の測定地点毎の特徴を捉えることができ、本記述手法が有効であることが確認された。

なお、これまでに見いだされた欠点としては、歩行者の音など局所的な環境音の可聴時間率が 100%に飽和しやすいことが挙げられる。これについては古川らの騒音レベルの記録のように量的要素を併せて記録することで、飽和した可聴時間率を詳細に把握することはできると考えている。

環境音の類型については対象とする空間のみならず、地域・世世代により異なる社会的文脈に影響されるため、妥当な類型について検討を続けていくことが望まれる。今後は類型化や実際の調査結果の事例を蓄積し、多様な地域・空間の特徴を比較検討することで、意味論的な観点を含めた快適な音環境設計の方向性を見いだしていくことが重要と考えられる。

注
1) 筆者らの過去の報告5)6)では時間占有率と呼称していたが、本報告では可聴時間率と呼称することとした。時間占有率とはある区切られた時間の中でその音が占める割合を意味していたが、本指標は本質的には聴取者が聞き慣らさないように全ての環境音に耳を傾け、その結果記録された指標であること、その聴取者以外の人間がその場にいたとしても、その環境音を聴取することが可能である最大の時間率を表していることを表しているためである。

参考文献
1) 環境庁（現環境省） 大気汚染年報（特殊公害課）：放音機騒音防止の手引き、第一法規、1990
2) R.マリーヌ・シェーフィー（鳥越時正）：世界的調査、平凡社、1986
3) 木村英美：都市の音環境計画に関する研究、学位論文（東京大学）、1993.3
4) 古川哲之、松本秀利、内山浩雄、松村美奈：音楽類別を考慮した物理計測手法の検討（音源レベル）時間構成マトリックスの提案、サンダーランドワーク、10巻、pp.57-65、2008.12
5) 平野浩明、川村史之、矢野隆：生活空間の音環境一熊本市内の中～大規模店舗における実測調査一、日本建築学会環境系論文集、第591号、pp.1-6、2005.5
6) 平野浩明、川村史之、辻原茂樹、河上健也、矢野隆：アーケード街路の音環境～熊本市・長崎市中央街路における実測調査一、日本建築学会環境系論文集、第664号、pp.1-7、2006.6
7) 苗田進浩：呪言調査～商業施設における音環境の現状、日本音響学会騒音・振動研究会資料、N-98-3、1998.1
8) 藤本一幸、鶴和憲、松江晃、足永泰：音の印象に関するアンケート調査(1)～(3)、日本音響学会講演論文集、pp.563-568、1988.10
9) 小柳元武：音環境の測定、騒音制御、Vol.17、No.4、pp.7-11、1993.8
10) 坂本織子、高木直樹、山下英弘、森田大：高層内で聞こえる音の種類が環境騒音のうるささの評価に及ぼす影響に関する研究、日本建築学会計画系論文集、第562号、pp.9-13、2002.12
11) 木本行雄、八尋正幹：地域類別による環境騒音の実態調査結果について、福岡市南区の場合一、日本音響学会騒音振動研究会資料、N-84-11-2、1984.11
12) 川村史之、小島隆哉、平手小太郎、安岡正人：環境音の印象評価構造に関する研究、日本音響学会誌、60巻5号、pp.249-257、2004.5

(2010年2月10日初稿受理、2010年8月16日採用決定)