COMPARISON BETWEEN THE IMPRESSION OF HOT-COLD AND WARM-COOL IN UNSPECIFIC SCALE ON THE EVALUATION OF THE EXPERIMENTAL COMBINED ENVIRONMENT

Naoki MATSUBARA, Riryo SHIMADA, Yoshihito KURAZUMI, Akira GASSHO and Kunihito TOBITA

Several analysis were applied to the experimental data obtained from the different environmental conditions and procedures to investigate the difference between two unspecific scales; the impression of “hot-cold” and “warm-cool”. The main results are as follows; 1) “warm-cool” was different from “hot-cold” in the degree of the influence of temperature and the auditory factor, 2) the possibility was shown that “warm-cool” and “hot-cold” were not on the one-dimensional placement, 3) the difference of the degree of the influence of the auditory factor was conspicuously shown by combining with temperature.

Keywords: Combined environment, unspecific scale, temperature, auditory factor, one-dimensional placement

1. 背景及び目的

筆者らは一連の複合環境評価研究 [11]の中で、評価尺度に使用する尺度は、特定の要因で決定される特異的尺度ではなく、異なる要因に共通する非特異的尺度がきわしいことを論じてきた[10, 11]。また、非特異的尺度に関する理論的考察も行ってきた。

非特異的尺度が有効である理由は、複合環境評価の研究の多くは、温熱環境条件と温熱感覚の関係に対して、色彩などの具体的要因が与える影響 [12-14]、景観の印象に及ぼす音環境の影響や音環境の印象に及ぼす景観の影響 [15], 気温が色温度の好ましさに及ぼす影響 [16]等の解明を主目的としていたのに対して、筆者らは異なる要因を等価なものとして扱うことを見当していたためである。要するに、それぞれの複合的・総合的な影響を明らかにするためには非特異的尺度を用いて測定することが必要であるということである。

「非特異的(non-specific or unspecific)」という用語は生命科学・医学分野等では学術用語として定着しており [17-19], 今後、建築分野でも非特異的尺度の理解を深めていくことは意義である。

このことは古くは、セリエのストレス学説における適応症候群 [20]の概念にルーツが見ることが出来よう。

筆者らの一連の複合環境評価に関する研究は、熱・音・光等に特異的な尺度ではなく、非特異的尺度を使用することが特徴である。従って、熱に特異的な尺度(例えば ASHRAE の7段階温冷感度尺度、温熱的快適性)に対して、空間の印象としての「冷暖の印象」「寒暑の印象」等を非特異的尺度として扱ってきた。初期の研究では、特異的尺度を用いることが非特異的尺度の評価にバイアスを与えることを見出し、非特異的尺度のみを使用してきた。しかし、2種類の尺度の比較を行うことは出来なかった。そこで、その後の研究では非特異的尺度と特異的尺度を同時に使用している。

筆者らの hue-beat 仮説に関する実験研究 [21]では、色彩の温熱的な影響を解明することを目的としていた。その中で「寒暑の印象」と「冷暖の印象」の両評価尺度の関係について、色度・色の逆・色の相関が「冷暖の印象」に比べて「寒暑の印象」が若干高く、温熱要因の寄与が高評価となっているように思える」と報告している。また
同様に、「寒暑の印象」は「雷雨の印象」に比べ色彩（温熱環境要因以外の環境要因）の影響が少なく、その理由として「寒暑」という感覚が、「雷雨」という感覚と一次元上に配置されていることを示唆しているが、一方で両評価尺度と室温との相関が異なる点が多く両見され、一次元上に並ばないことも報告している。

他の先行研究では、Kuno et al.、Kono et al.が温熱環境特性的な評価尺度としての「寒い・暑い・涼しい・暖かい」の感覚は、一次元上に配置されないと述べている。しかし、非特異的評価尺度としての「寒暑の印象」と「温熱の印象」の比較に関するデータに考察を、(先の実験結果では温度条件が2段階の散剎図上考察であった) はほとんど。従って、この比較は新たな知見をもたらすものであると言える。

松原らは「温感」と「暖感」の「寒暑の印象」の3つの尺度と室温に関係に注目し、温熱・視覚・聴覚要因の複合環境評価実験のデータに対して、説明変数を室温、目的変数を評価尺度とした線形回帰分析を行った。その結果、視覚要因あるいは聴覚要因の提示、または視聴覚要因の提示要因を同時に提示すると、提示しない場合と比較して、回帰式の勾配が小さく、明らかにした。場所ならし、板帯の環境は「寒暑の印象」は温熱要因に対する反応がより大きく、非特異的尺度の「寒暑の印象」の「温熱の印象」は聴覚要因、視覚要因に対する反応がより大きいことを明らかにした。このことから、非特異的尺度では、温熱要因以外の聴覚要因、視覚要因も注意が配分されたために反応に差が現れ、一方で温熱要因に対する注意資源が特異的尺度に比べて減少したことで温熱要因に対する反応が減少したと考えられる。

注意に関する報告は、後に須藤らがおり、教法によって被験者の注意を受け視覚要因、温熱要因を向ける複合環境評価実験を行い、注意を視覚要因に含めることによって複合環境評価において注意が重要役割を果たすことを見出している。

しかし、既報の「雷雨」と「寒暑の印象」の非特異的尺度の比較が主目的であったため「暖感の印象」と「寒暑の印象」の非特異的尺度よりは出題していなかった。先に述べたように、「防寒室の温度との相関が「暖感の印象」と比べ「寒暑の印象」が若干高く、聴覚要因の寄与が高いとの評価となっているよう示した」とした報告の「特異的尺度間においても注意の影響が温熱要因の寄与に影響した可能性もある。

そこで、本研究では非特異的評価尺度の「暖感の印象」と「寒暑の印象」の2つの非特異的尺度の比較を行うことを目的とする。具体的には、温熱要因(室温)との相関係数を算出し、既報との比較を行い「暖感」「寒暑」の一次元上配置についての考察を行う。さらに島田らと同様の方法を用いて、環境要因が与える影響性の差の比較を行い、両評価尺度の差異を明らかにする。最後に、これらの差異を注意概念を用いて考察する。「暖感の印象」および「寒暑の印象」の違いを明らかにするのは、より適切な尺度を選択する場合に、有意義であり、建築環境の向上に役立つものと考えられる。

2. 方法

2.1 実験概要

本研究では既報とし、21で使用した複合環境実験データを再分析する。各実験データの実験室環境条件は基準状態(表1)と呼ぶ環境条件に聴覚要因、視覚要因及び聴覚+視覚要因の環境要因提示を行った環境条件である。基準状態では、各実験データで暴露する環境要因は主に温熱要因である室温・湿度・着衣量・気流と、視覚要因である照度・スライド・カーテン、聴覚要因である騒音等がある。実験Aでは、室温：26.0, 29.0, 32.0, 34.0℃, 照度：5 lx, 騒音レベル45.2 dB(A)である。実験Bでは、室温：21.0, 22.5, 24.0, 25.0, 27.0℃, 照度1000 lx, 騒音レベル43.8 dB(A)である。実験Cでは、室温：27.0, 28.5, 30.0, 31.5, 33.0℃であり、照度及び騒音レベルは実験Bと同様である。また全ての実験において湿度・気流・着衣量は同様であり、それぞれ50%, 0.2 m/s以下, 0.4 cloである。

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{データ記号} & \textbf{A} & \textbf{B} & \textbf{C} \\
\hline
\textbf{出典} & \text{文献35} & \text{文献34} & \text{文献35} \\
\hline
\text{実験室温度条件(℃)} & 26.0, 29.0 & 21.0, 22.5, 24.0 & 27.0, 28.5, 30.0 \\
\hline
\text{騒音レベル\,(dB)} & 45.2 & 43.8 & \\
\hline
\text{視覚要因} & \text{スライド} & \text{カーテン} & \text{画像なし} \\
\hline
\end{tabular}
\caption{基準状態}
\end{table}

2.1.1 各実験の手続き

実験Aでは、実験室に入室し、30分間の温度順応及び騒音順応の時間を取り、30分経過後に実験を開始し65分40秒後に終了する。「示す」という声の後、何者も示すない基準状態、視覚要因を示す。聴覚要因を示す。視覚と聴覚要因を示す順に示し、刺激提示後10秒間は示す無刺激に示すその後60秒間で評価を行う。評価を繰り返す観察を示す要因は示されており自由に見聞を示すことができる。これを取り1セットとして、その12回の評価を終え後、3分間休憩し、その後4セット16回の評価を終える実験を終了する。被験者は温熱要因(室温条件(26.0, 29.0, 32.0, 34.0℃)の全てと全ての示し刺激条件を経験する)、示し順序はランダムに決定する。

実験B,Cでは、まず前室(実験B \cdot 15分、実験C \cdot 30分)で温度順応時間を取り、その後実験室に入室し30分間の温度順応時間を取る。入室直前10分前で示しの視覚要因を示す(暖色・暖色の壁面4面に覆われたカーテン)の基準状態に関する評価を行い、40分経過後に実験を開始する。始めに60秒で騒音濃度についての評価を行い、続いて聴覚要因の示すが開始される。示し順序はランダムに決定し、始めに30秒間、聴覚刺激目を示してもらい、30秒後に60秒間で評価を行う。被験者は温熱要因(室温条件(実験B: 21.0, 22.5, 24.0, 25.0, 27.0℃、実験C: 27.0, 28.5, 30.0, 31.5, 33.0℃)の全てと全ての示し刺激条件を経験する。

2.1.2 データの抽出

実験Aでは、聴覚と聴覚要因刺激の間の影響が最も少ないと考えられる「温度順応直後」と「途中休憩前」の示し値を抽出した。実験B,Cでは、実験室温度に十分暴露されたと考えられる40分後の示し値を抽出し、これを基準状態の示し値とした。
聴覚要因表示の環境条件(以後、聴覚要因表示状態と呼ぶ)は、被験者が暴露される環境要因は、基準状態にある環境要因と聴覚要因と環境音である。実験Aでは、「聴覚要因表示状態」及び「聴覚要因表示状態」があるが、実験B,Cにはこれらの表示刺激はない。本研究では各実験データの共通事象を示すことが目的であるため、分析対象から外した。聴覚要因表示の種類を表2に示す。これら聴覚要因は実験Aと実験B,Cで異なる効果音CDから抜粋したものであり、実験Aについては被験レベルを測定していない。

これらの二つの実験室環境条件「基準状態」「聴覚要因表示状態」から非特異的尺度の関係を分析する。非特異的尺度「暖暑の印象」「寒暑の印象」の2つの評価尺度を図1に示す。それそれぞれ極に「暖かい」「涼しい」「寒い」を配置しており、既報30,31及び本研究において、間隔尺度として処理した。なお、各実験データでは「温冷感」も同時に使用しているが、本研究の目的外のためこれらの結果提示を控えている。「温冷感」についての結果は既報30,31を参照されたい。「暖暑の印象」「暖暑の印象」の数値は全1「室内の印象を総合的に評価してください」である。

表2 聴覚要因表示(環境音)の種類

<table>
<thead>
<tr>
<th>データ項目</th>
<th>聴覚要因・環境音</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>鳥・鶏・川</td>
</tr>
<tr>
<td></td>
<td>交通騒音</td>
</tr>
<tr>
<td>B, C</td>
<td>交通騒音</td>
</tr>
<tr>
<td></td>
<td>ビックハンマー</td>
</tr>
</tbody>
</table>

*: 記号：室内的印象を総合的に評価してください

図1 非特異的尺度の種類

2.2 統計解析方法

本研究では温暑要因(室温)と各評価尺度との関係を把握するために相関係数の算出し及び回帰分析を行う。さらに、2つの尺度の相関値を比較するために検定を、また、聴覚・視覚・温暑要因が両評価尺度に影響しているかを把握するため、これら環境要因を3因子とした3元配置分散分析を行う。また、聴覚要因表示状態による相関値の差が評価尺度間で異なるかを把握するため、2元配置分散分析の交互作用検定で把握する。

3. 結果及考察

3.1 評価尺度と温暑要因(室温)との相関関係

3.1.1 基準状態

基準状態における時暑要因(室温)と評価尺度の相関係数は、実験Aの「温暑の印象」「温暑の印象」共にr=0.63(p<0.01, N=160)であった。実験B,Cの「暖暑の印象」「暖暑の印象」はr=0.54(p<0.01, N=92)、「暖暑の印象」はr=0.50(p<0.01, N=92)であった。実験B,Cの「寒暑の印象」はr=0.55(p<0.01, N=92)、「冷暖の印象」はr=0.52(p<0.01, N=92)であった。相関係数の差の検定を行ったところ、「寒暑の印象」と「冷暖の印象」に有意差(p<0.05)は示されなかった。

3.1.2 聴覚要因表示状態

聴覚要因表示状態での温暑要因(室温)と評価尺度の相関係数を表3-5に示す。

実験A(表3)より、相関係数の有意確率は全条件で有意(p<0.01)であった。実験B,C・暖色(表4)及び寒色(表5)より、「暖暑の印象」の「秋の虫」、「川」、「風鈴」で相関係数の有意確率が有意ではないかったが、その他の条件では有意であった(p<0.05)、「寒暑の印象」(音の印象)の相関係数の差の検定を行ったところ、有意差は示されなかった。

3.1.3 基準状態と聴覚要因表示状態の比較

基準状態と聴覚要因表示状態(表3-5)の相関係数を比べると、聴覚要因表示状態の相関係数が大きい。相関係数の差の検定を行ったところ、実験A(表3)の「寒暑の印象」では、基準状態と「輝」で有意差(p<0.01)が示された。「寒暑の印象」では、基準状態と「輝」で有意差検定(p<0.1)が示された。実験B,C・暖色(表4)の「寒暑の印象」では、基準状態と「輝」で有意差検定(p<0.05)が示された。「冷暖の印象」では、基準状態と「輝」で有意差検定(p<0.01)が示された。実験B,C・寒色(表5)の「冷暖の印象」では、基準状態と「輝」で有意差検定(p<0.01)が示された。その他の条件では有意差は示されなかった。
なかった。
実験B,C・暖色(表4)及び寒色(表5)の「涼唆の印象」は「秋の虫」 「川」「風鈴」で相関係数の有意差率がp<0.1であったため、差の検定を控えたが、相関係数の有意差率が有意でないことは聴覚要因の影響と言えよう。

以下の結果から、相関係数の有意差率が有意であった条件では、「寒唆の印象」と「涼唆の印象」の相関係数に基礎状態、聴覚要因表示状態に有差が示された。松原ら29は「涼唆の印象」に比べ「寒唆の印象」が若干高く、温熱要因の寄与が有意で

定となっているように思える」を報告しているが、本研究の温熱要因(室温)と評価尺度の相関係数差の分析においてこれらを証明する結果は得られなかった。

しかし、「涼唆の印象」に、聴覚要因表示により温熱要因(室温)と

の相関があると言えない条件が示されたことと、"寒唆の印象"は温热要因の寄与が高い評定となっているとした松原ら30を支持する結果であること、両評価尺度共に基礎状態に対する聴覚要因表示状態では相関係数が小さく、聴覚要因の影響を受けていると考えられる。

このことは、松原ら30、島田ら31、Matsubara et al.32と同様な結果が示されたと言える。

3.2 評価尺度の温熱要因(室温)・聴覚要因に対する差異
3.2.1 温熱要因(室温)に対する申告値変化の差異

温熱要因(室温)と「涼唆の印象」「寒唆の印象」申告値変化量の関

係を表6、7に示す。これら(表6、7)の算出式は説明変数を温熱要因(室温)、目的の変数を温熱要因(室温)別の「寒唆の印象」「涼唆の印象」平均値とし、申告値を重みとした回帰分析結果である。

なお、表4、5より「涼唆の印象」で相関係数の有意差率がp<0.1であった「秋の虫」「川」「風鈴」についても「寒唆の印象」と比較するために同様な分析を行い、参考式として算出した(表7網掛け部)。

表6より「寒唆の印象」の回帰係数の有意差率は、実験Aでは「花火」「風鈴」で有意傾向(p<0.1)であったが、他の条件で有意(p<0.05)であった。実験B,C・暖色では、「秋の虫」「川」で有意傾向(p<0.1)であったが、実験B,C・寒色を含む他の条件では有意(p<0.05)であった。決定係数は、実験Aでは0.86<R^2<0.99であり、実験B,C・暖色では0.42<R^2<0.90、実験B,C・寒色では0.48<R^2<0.89であった。

表7より「涼唆の印象」の回帰係数の有意差率は、実験Aでは全条件で有意(p<0.05)であり、決定係数は0.93<R^2<0.99であった。実験B,C・暖色及び寒色では共に「秋の虫」「川」「風鈴」でp<0.1であり、決定係数はR^2<0.16と極端に低かった。その他の条件では有意(p<0.05)であり、決定係数は0.44<R^2<0.89であった。

温熱要因(室温)に対する申告値変化量を、回帰式勾配から把握すると、実験Aでは「花火」「交通騒音」で「寒唆の印象」がより勾配が大きく、その他の条件「基礎条件」「川」「鳴」で「涼唆の印象」がより勾配が大きかった。実験B,C・暖色及び寒色では、「秋の虫」「川」「風鈴」の回帰式の信頼性は低いが、全条件で「寒唆の印象」の勾配が大きかった。

全体の傾向として「寒唆の印象」の方がより回帰勾配が大きく、回帰勾配差について、共分散分析による回帰式の平行性の検定を行ったところ、有意差は示されなかった。このことから、温熱要因(室温)に対する申告値変化量に有意差が無いことが明らかとなった。

「寒唆の印象」は両端に暑い・寒い、「涼唆の印象」は暖かい・涼

しいが配置された尺度である。「寒唆の印象」と「涼唆の印象」が一

次元配置であれば、「涼唆の印象」の暖かい・涼しいは「寒唆の印象」の暑い・寒いに含まれられるため、温熱要因(室温)との関係を示す回

表6 「寒唆の印象」と室温の関係

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

表7 「涼唆の印象」と室温の関係

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
</tr>
</tbody>
</table>
表8 共分散分析結果（実験A）

<table>
<thead>
<tr>
<th>条件</th>
<th>感覚要因</th>
<th>切片項目</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>実験A (基準条件)（感覚要因なし）</td>
<td>0.35</td>
<td>p<0.05</td>
<td></td>
</tr>
<tr>
<td>実験A (川)</td>
<td>0.925</td>
<td>p<0.01</td>
<td></td>
</tr>
<tr>
<td>実験A (交通騒音)</td>
<td>0.55</td>
<td>p<0.01</td>
<td></td>
</tr>
<tr>
<td>実験A (時間が)</td>
<td>0.638</td>
<td>p<0.01</td>
<td></td>
</tr>
<tr>
<td>実験A (風速)</td>
<td>0.775</td>
<td>p<0.01</td>
<td></td>
</tr>
<tr>
<td>実験A (風吹)</td>
<td>0.11</td>
<td>p<0.01</td>
<td></td>
</tr>
<tr>
<td>実験A (花火)</td>
<td>0.588</td>
<td>p<0.01</td>
<td></td>
</tr>
</tbody>
</table>

表9 共分散分析結果（実験B・C・暖色）

<table>
<thead>
<tr>
<th>条件</th>
<th>感覚要因</th>
<th>切片項目</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>実験B・C・暖色（感覚要因なし）</td>
<td>-0.109</td>
<td>p<0.1</td>
<td></td>
</tr>
<tr>
<td>実験B・C・風速（感覚要因なし）</td>
<td>-0.085</td>
<td>p<0.01</td>
<td></td>
</tr>
<tr>
<td>実験B・C・交通騒音（感覚要因なし）</td>
<td>-0.359</td>
<td>p<0.01</td>
<td></td>
</tr>
<tr>
<td>実験B・C・時間（感覚要因なし）</td>
<td>0.293</td>
<td>p<0.1</td>
<td></td>
</tr>
<tr>
<td>実験B・C・風速（感覚要因なし）</td>
<td>0.554</td>
<td>p<0.01</td>
<td></td>
</tr>
<tr>
<td>実験B・C・風吹（感覚要因なし）</td>
<td>0.624</td>
<td>p<0.01</td>
<td></td>
</tr>
</tbody>
</table>

表10 共分散分析結果（実験B・C・寒色）

<table>
<thead>
<tr>
<th>条件</th>
<th>感覚要因</th>
<th>切片項目</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>実験B・C・寒色（感覚要因なし）</td>
<td>-0.587</td>
<td>p<0.01</td>
<td></td>
</tr>
</tbody>
</table>

3.2.2 温度要因（室温）・聴覚要因に対する申告値水準の差異

算出された回帰式(6、7)から、寒暑の印象を「涼暖の印象」
で共分散分析を行ったところ、回帰式切片に有意差が示された。
表8-10に示す。表8-10中の切片項差は、共分散分析における「寒
暑の印象」-（マイナス）「涼暖の印象」の推定値である。また、実験
B・C・暖色(例)及び暖色(例)10の「秋の虫」「川」「風吹」では回帰
係数が有意でないが(p>0.1)、参考までに算出した(表9.10 織入係数).
表8より実験Aでは、切片項差が基準状態を含め聴覚要因呈现状
態で有意(p<0.05)であった。切片項の数値は全てプラス値であり、
「寒暑の印象」の申告値は「涼暖の印象」に比べ高い、表9より実
験B・C・暖色では基準状態の差は有意ではないが、聴覚要因呈現状
態の差は有意(p<0.05)または有意傾向(p<0.1)が示され、「寒暑の
印象」の申告値がより高い。表10より実験B・C・寒色では、基準
状態を含め聴覚要因現在状態で有意差(p<0.05)が示された。切片項
の数値は、基準状態ではマイナス値であって「涼暖の印象」の申告値
がより高いため、聴覚要因現在状態で「寒暑の印象」の申告値がより
高い。

このことから基準状態では「涼暖の印象」の申告値が高い場合で
も、聴覚要因現在状態では全ての温熱要因(室温)条件において「寒
暑の印象」がより高い申告値示すことが明らかとなった。

さらに表8-10より基準状態と聴覚要因現在状態の切片項差に注
目すると、基準状態に比べ全聴覚要因現在状態で差が大きく聴覚要因
現在状態の申告値が一方の評価尺度で申告値変化が生じたと考えられ
れた。聴覚要因条件の申告値の申告値のグラフを図3-8に示す。

申告値分布から聴覚要因の傾向を把握すると、実験A(図3、4)で
は「寒暑の印象」「涼暖の印象」と共に「交通騒音」「風速」は同様の申
告傾向を示し、他の聴覚要因に比べ高い申告値分布である。「川」「滝」
「風速」は、前者の聴覚要因に比べ低い申告値分布であり、同
様な申告傾向を示している。「花火」の申告値は$34^\circ C$では「交通騒
音」「風速」の申告値に近いが、他の温度要因(室温)条件では両者「交
通騒音」「時間」、「川」、「風速」、「風速」の中間に申告値が分布し
ている。実験B・C・暖色(図5、6)、寒色(図7、8)の両者評価尺度共
に、$21^\circ C$で聴覚要因の申告値が高まっているが、他の温熱要因(室
温)では「時間」「ビックハンマー」「交通騒音」は同様な申告傾向を
示し、他の聴覚要因に比べ高い申告値分布である。「秋の虫」「川」
「風速」では、前者の聴覚要因に比べ低く申告値分布であり、同様
な申告傾向を示している。これら申告値分布の傾向から、相対的に
高い申告値分布の聴覚要因を緩かく傾向の聴覚要因とし、低い申告値
分布の聴覚要因を急激な傾向の聴覚要因としてグループ分けを行った。

実験Aでは「交通騒音」「風速」を緩かく傾向の聴覚要因、「川」「滝」
「風速」「風速」を急激な傾向の聴覚要因とした。また、「花火」は申告
値が両グループの中間に位置しているが、$34^\circ C$において「交通騒音」
表11 グループ別の室温との関係（回帰式データ）

<table>
<thead>
<tr>
<th>群</th>
<th>室温</th>
<th>依存変数</th>
<th>回帰式（M3）</th>
<th>設定</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>実験A</td>
<td>寒暑の印象</td>
<td>暗い側</td>
<td>T=0.76-0.17ta</td>
<td>0.89</td>
<td>p<0.1</td>
</tr>
<tr>
<td>実験A</td>
<td>寒暑の印象</td>
<td>暗い側</td>
<td>T=0.99-0.18ta</td>
<td>0.93</td>
<td>p<0.05</td>
</tr>
<tr>
<td>実験A</td>
<td>暖暖の印象</td>
<td>暗い側</td>
<td>T=-0.22-0.10ta</td>
<td>0.98</td>
<td>p<0.001</td>
</tr>
<tr>
<td>実験A</td>
<td>暖暖の印象</td>
<td>暗い側</td>
<td>T=2.43-0.21ta</td>
<td>0.99</td>
<td>p<0.001</td>
</tr>
<tr>
<td>実験B,C</td>
<td>暗い色</td>
<td>寒暑の印象</td>
<td>T=2.26-0.12ta</td>
<td>0.68</td>
<td>p<0.01</td>
</tr>
<tr>
<td>実験B,C</td>
<td>暗い色</td>
<td>寒暑の印象</td>
<td>T=2.28-0.08ta</td>
<td>0.59</td>
<td>p<0.001</td>
</tr>
<tr>
<td>実験B,C</td>
<td>暗い色</td>
<td>寒暑の印象</td>
<td>T=2.39-0.11ta</td>
<td>0.6</td>
<td>p<0.001</td>
</tr>
<tr>
<td>実験B,C</td>
<td>暗い色</td>
<td>暖暖の印象</td>
<td>暗い側</td>
<td>T=2.71-0.04ta</td>
<td>0.1</td>
</tr>
<tr>
<td>実験B,C</td>
<td>暗い色</td>
<td>寒暑の印象</td>
<td>T=1.12-0.15ta</td>
<td>0.87</td>
<td>p<0.01</td>
</tr>
<tr>
<td>実験B,C</td>
<td>暗い色</td>
<td>寒暑の印象</td>
<td>T=1.63-0.09ta</td>
<td>0.56</td>
<td>p<0.05</td>
</tr>
<tr>
<td>実験B,C</td>
<td>暗い色</td>
<td>暖暖の印象</td>
<td>暗い側</td>
<td>T=1.24-0.12ta</td>
<td>0.65</td>
</tr>
<tr>
<td>実験B,C</td>
<td>暗い色</td>
<td>暖暖の印象</td>
<td>暗い側</td>
<td>T=2.12-0.03ta</td>
<td>0.05</td>
</tr>
</tbody>
</table>

表12 一元配置分散分析結果

<table>
<thead>
<tr>
<th>群</th>
<th>セット</th>
<th>室温</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>実験B,C</td>
<td>暖暖の印象</td>
<td>寒の色</td>
<td>22.5℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>25.5℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>27.0℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>33.0℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>22.5℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>25.5℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>30.0℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>22.5℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>33.0℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>24.0℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>25.5℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>27.0℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>33.0℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>22.5℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>25.5℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>27.0℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>29.5℃</td>
</tr>
<tr>
<td>実験B,C</td>
<td>寒の色</td>
<td>寒の色</td>
<td>30.0℃</td>
</tr>
</tbody>
</table>

*出典外はp>0.1であった。

図9 グループ別の室温との関係（実験A）
図10 グループ別の室温との関係（実験B,C・暖色）
図11 グループ別の室温との関係（実験B,C・暗い色）

「暖」の申告値に近いため、暖かい側の聴覚要因とした。実験B,Cでは「暖」が「ピクニック」「交通騒音」を暖かい側の聴覚要因。

「秋の虫」が川」「風鈴」を暖かい側の聴覚要因とした。

験のグループ分けは、申告値分布の全体傾向に注目した分類であり、聴覚要因の影響を把握するための便宜上の分類であることを断念しておく。これ2つのグループの回帰式を図9～11及び表11に示す。

聴覚要因呈示状態における実験環境条件は、「寒暑の印象」の申告値最低値から実験A(図3,4)26℃の「暖」で3.7、実験B,C・暖色(図5,6)では24℃の「風鈴」で3.5、寒色(図7,8)では22.5℃の「秋の虫」で3.2であることから、中立付近(申告値低値)から暖かい又は暑い状態であることが推測される。

全体として、回帰式の当てはまりは良いといえる（表11）。実験B,Cの「秋の虫」「川」「風鈴」の暖かい側の聴覚要因の回帰式は、決定係数が低く回帰係数の有意確率がp>0.1の結果を示した。

図9～11より「寒暑の印象」の暖かい側の聴覚要因の申告値は、図11室温21.0℃より4.4以上であり、「暖暖の印象」の群回帰式の全ての聴覚要因(室温)の条件に対して高い申告値を示した(公分散分析にて切片直前p<0.05)。また、「寒暑の印象」の暖かい側の聴覚要因の申告値は図11室温22.5℃より3.3以上であり、「暖暖の印象」の群回帰式の全ての聴覚要因(室温)の条件に対して高い申告値を示した(公分散分析にて切片直前p<0.05)。

以上の結果より、「寒暑の印象」が中立付近から暖かい又は暑いと申告された実験環境状態では「暖暖の印象」の申告値が常に小さいことから、聴覚要因呈示状態において「暖暖の印象」は、「寒暑の印象」に比べ聴覚要因(室温)の影響が小さい評価値と考えられる。

聴覚要因(室温)に対する影響は、評価値の群相関係数及び申告値変化率の差は表示されたが、評価値の申告値変化率の差は表示されたと言えよう。また、図2との比較から、このことは「寒暑の印象」と「暖暖の印象」が一次元配置でないことを示唆するものである。

3.2.3相関係数・回帰係数が有意でない条件について

聴覚要因呈示状態において、「暖暖の印象」で相関及び回帰係数が有意でない条件(「秋の虫」「川」「風鈴」)があることを示した。これらは聴覚要因(室温)のみで説明できないことを示唆しており、この結果は参考程度にとるべきである。そこでこれら2つの条件下の分析を行い、先の「暖暖の印象」は「寒暑の印象」に比べ聴覚要因(室温)の影響がより小さいという結果について考察する。さらに、これら2つの条件下の聴覚要因(室温)と「暖暖の印象」の非一次相関関係についての考察を行う。分析方法としては、実験B,C・暖色、寒色
の「秋の虫」川「風鈴」それぞれの「涼暖の印象」と「寒暑の印象」の申告値が寒暖要因(室温)毎で把握する検定である。算出結果を表12、図12、13に示す。

実験B,C・暖色(図12)より「風鈴」の24℃で「寒暑の印象」に比べ「涼暖の印象」の申告値が0.1ポイント高いが、その他の寒暖要因(室温)条件で「寒暑の印象」の申告値がより高い。実験B,C・寒色(図13)では全寒暖要因(室温)条件で「寒暑の印象」の申告値がより高い。「寒暑の印象」と「涼暖の印象」の申告値(図12)は実験B,C・暖色の「秋の虫」では、寒暖要因(室温)9条件中4条件、川川では3条件「風鈴」では3条件で、実験B,C・寒色の「秋の虫」では寒暖要因(室温)9条件中5条件、川川では6条件、風鈴では7条件で有意差(p<0.05)又は有意差傾向(p<0.01)が示された。

「寒暑の印象」は実験B,C・暖色(図12)「風鈴」の24℃で申告値=3.5、実験B,C・寒色(図13)「秋の虫」の22.5℃で申告値=3.2が最も低く、実験B,C・暖色(図12)「秋の虫」の31.5℃で申告値=5.13、実験B,C・寒色(図13)「秋の虫」の31.5℃で申告値=5.25が最も高くなり、聴覚要因呈示状態における実験環境条件としては、中立付近から暖かい状態であったことが推測される。

以上の結果から、「秋の虫」「川」「風鈴」において「寒暑の印象」の申告値が中立付近から暖かい環境下において「涼暖の印象」の申告値が小さく、「涼暖の印象」は寒暖要因(室温)の影響が小さいと考えられ、3.2.2に同様の結果が示された。

「涼暖の印象」で相関及び回帰係数が有意でない（「秋の虫」「川」「風鈴」）原因について、実験B,C・暖色(図12)暖色、(図13)の21℃で、聴覚要因条件に関わらず申告値が収束している。前者では「寒暑の印象」で申告値4.1〜4.8、「涼暖の印象」で申告値4〜4.7、後者では「寒暑の印象」で申告値4〜4.2、「涼暖の印象」で申告値3.7に全聴覚要因条件が収束している。「涼暖の印象」図6、図8では21℃を除いた回帰係数は実験B,C・暖色の「秋の虫」「風鈴」、実験B,C・寒色の「川」「風鈴」でp<0.1であった実験B,C・暖色「川」「風鈴」はp=0.1、実験B,C・寒色「秋の虫」はp=0.22ことから、寒暖要因(室温)21℃における「涼暖の印象」申告値の影響が強いことが分かった。

「涼暖の印象」だけでなく「寒暑の印象」に寒暖要因(室温)、聴覚要因(音)、視覚要因(映像・音度)が複雑に影響し合っている事は、島田らやGassho et al.16、長野ら30で報告されており、図12や図13、さらに3.2.2の図5及び図7の「寒暑の印象」でも同様の傾向であるが、「涼暖の印象」の様に寒暖要因(室温)との一線関係をのげるほどのものではなく、「涼暖の印象」では寒暖要因(室温)と聴覚要因との組み合わせによる影響が、より顕著に現れる評価尺度と考えられる。さらに、「涼暖の印象」では、特定の寒暖要因の影響を受けないマッピング効果に対応した反応を示す可能性も考えられよう。

また、3.2.2の図5〜8及び図10、図11の実験B,C「寒暑の印象」「涼暖の印象」において寒暖要因(室温)が30℃を超えると申告値が下げる傾向がある。この場合、聴覚要因が寒暖要因に対する反射に何らかの影響を与えた可能性が考えられる。しかしこれらの点については、今後の検討課題としたい。

3.2.4 聴覚要因の影響

「涼暖の印象」の「暖かい側の聴覚要因グループ」と「涼しい側の聴覚要因グループ」の申告値の差は、「寒暑の印象」の両グループの申告値の差に比べ低い傾向が見られた(図9〜11)。これら差を共分散分析により片側検定を算出したところ、実験A(図9)では「寒暑の印象」は0.63に対し「涼暖の印象」では0.84であった。実験B,C・暖色(図10)では「寒暑の印象」は1.03に対し「涼暖の印象」では1.3であつた。実験B,C・寒色(図11)では「寒暑の印象」は0.97に対して「涼暖の印象」は1.42であり、いずれも「涼暖の印象」の切片値がより大きい。

さらに「寒暑の印象」の「涼しい側の聴覚要因グループ」と「暖かい側の聴覚要因グループ」の申告値差が「涼暖の印象」の「暖かい側の聴覚要因グループ」と「暖かい側の聴覚要因グループ」の申告値差を、聴覚要因（暖かい側）、暖かい側の聴覚要因グループと評価尺度（「寒暑の印象」、「涼暖の印象」）の2元配置分析の交互作用検定を用いて把握したところ、この交互作用が有意な場合、評価尺度に聴覚要因グループの申告値の差に差があると解釈している実験A(図9)では有意差は示されなかったが、実験B,C・暖色(図10)の25.5℃で有意差傾向(p<0.01)が示された。実験B,C・寒色(図11)では24℃、30℃、35℃で有意差傾向(p<0.01)が示され、25.5℃で有意差(p<0.05)が示された。

以上より、「涼暖の印象」と「寒暑の印象」の聴覚要因グループ申告値差に差が示され、両「暖暖の印象」の申告値差がより大きいことから、「涼暖の印象」は聴覚要因の影響がより大きいと考えられる。

一方で、有意差が示された条件は実験環境条件(温度要因(室温)、視覚要因(暖色・冷色等)）により異なった。この原因としては、聴覚要因や視覚要因、聴覚要因の組合せによる影響が考えられる。実験B,C・暖色(図10)と実験B,C・寒色(図11)から聴覚要因(暖かい側・暖かい側)と視覚要因(室温)と視覚要因(暖色・冷色)と各評価尺度との3元
配置分類分析を行ったところ、両評価尺度共に温熱要因と聴覚要因の交互作用が有意であった（p<0.01）。

このことは、「涼暖の印象」と「寒暑の印象」の聴覚要因の影響差は温熱要因との組み合わせにより顕著（有意）に示されるということである。つまり「涼暖の印象」は聴覚要因の影響を受ける一方、「寒暑の印象」との聴覚要因の影響差が顕著に示される温熱要因条件に制限されると考えられる。先に「涼暖の印象」は温熱要因（室温）と聴覚要因との組み合わせによる影響がより顕著であることを述べた。

「寒暑の印象」との聴覚要因の影響差がある温熱要因条件により異なるのは、組み合わせによる影響差がある。これらの要因条件で表わすと、この要因の影響に顕著な差を生じさせた1つの要因であるが、聴覚要因の影響が有る可能性がある。

また、実験Aのみで有義差が示された条件がなかった点については、実験Bとの最も異なる実験環境条件として室温差がある。雑音が両評価尺度に影響することは長野ら30により報告されおり、実験Aでは68に対し実験Bでは1000±であった。本研究では実験間での比較は困難であると判断しデータ解析を控えたが、聴覚要因の影響に雑音が影響している可能性がある。

3.2.2 及び3.2.3の結果から、温熱要因や聴覚要因のある複合環境下において、「涼暖の印象」は「寒暑の印象」に比べ温熱要因の影響が小さく、聴覚要因の影響が大きいようである。

この理由として一つの推測を行うと、村山ら31は『日本人は暖かさを需要感を温熱感の程度を表すだけでなく快適性を含めた表現として捉えており、暑さ冷えさは違う概念として捉えている』と報告している。他に村山ら32、筆者らの研究33、34では被験者の各環境要因への注意の偏りが環境要因に対する評定に影響をもたらすこと報告している。同じく筆者は田島35は複合環境実験から「環境要因に対する反応の違いは評価条件に分配される注意資源の量に起因していると考えられる」と報告している。「暑い」、「寒い」と「暖かい」「涼しい」の捉え方の違い、すなわち「涼暖の印象」を温熱感の程度を表すだけでなく概念として捉えたことにより、「寒暑の印象」に比べ温熱要因に分配される注意資源が減少し、聴覚要因に注意資源がより多く分配された事が、両評価尺度の評定差として表れたと推測される。

4.まとめ

本研究では複合環境評価実験における「寒暑の印象」と「涼暖の印象」の尺度比較を行った。その結果を以下に示す。

1)温熱要因（室温）と各評価尺度の相関係数は、「寒暑の印象」と「涼暖の印象」の間に顕著な差は無かった。しかし、聴覚要因を示した場合は両評価尺度の相関係数が小さいので、聴覚要因の影響を受けてはいることが明らかである。また「涼暖の印象」でいくつかの聴覚要因を示した場合には温熱要因（室温）との相関があると言えないため、「涼暖の印象」は温熱要因（室温）の環境要因のみではなく聴覚要因の影響を明確に受ける評価尺度と考えられる。

2)温熱要因（室温）と各評価尺度の関係を回帰式により把握したところ、回帰係数は「寒暑の印象」が大きい条件で多くかった。このことから「寒暑の印象」と「涼暖の印象」は一次元配置で無い可能性を示唆した。

3)「寒暑の印象」と「涼暖の印象」の単位差評価尺度から、聴覚要因が有する状態において「涼暖の印象」は「寒暑の印象」に比べ相関値が低く、この時「寒暑の印象」から環境条件は中立付近は暖かさを示す状態でなく、逆に「涼暖の印象」は「寒暑の印象」に比べて温熱要因の影響が小さいと考えられた。また、このことから「寒暑の印象」と「涼暖の印象」は一次元配置で無いと推測された。

4)「涼暖の印象」の「暖かい側の聴覚要因」と「暖かい側の聴覚要因」の単位差評価尺度は「寒暑の印象」よりも大きく、「涼暖の印象」は「寒暑の印象」より聴覚要因の影響が大きいと推測された。

5)「涼暖の印象」では、特定の聴覚要因（秋の虫「川」、「風鈴」）により、温熱要因の室温との関係が一次の線形関係で無くなることが明らかとなった。このことについて、「涼暖の印象」では温熱要因（室温）と聴覚要因との組み合わせによる影響が顕著であり、聴覚要因の影響が顕著な差を生じさせた1つの要因であることを示唆した。

本研究では両評価尺度の違いを明らかにすることを目的とし、分析結果の全体傾向に注目した。その結果、「涼暖の印象」は「寒暑の印象」と比較し、温熱要因及び聴覚要因の影響度合いに差があることが明らかになった。一方で、温熱要因や聴覚要因の条件により、その影響度合いの差は見受けられた。さらにこのことにより、条件の要因も影響している可能性もある。また本研究では個人差の影響は考慮していない。両評価尺度の差異を明らかにするとこれらを含めた、より詳細な分析が必要である。しかし、本研究で特異的評価尺度間の差異を具体的に示したこと、これまでの複合環境評価実験の知見をさらに進めたものであり、意義のある結果と言える。

謝辞

実験にご協力いただいた被験者の皆様に感謝いたします。なお、本研究の一部は国立科学技術庁研究費補助金研究Ｂ（代表：松原省枝　課題番号21300270）の助成を受けた。

参考文献

1) 増江昌雄・桜井美政・松原省枝：室内空間における各種環境要因の複合効果について—夏期生産者に関する研究—、日本生気学会雑誌、18(9), p.44, 1981。

2) 増江昌雄・桜井美政・野口孝太郎・松原省枝・中川嘉久・高橋和夫・松原誠二：室内環境要因の複合作用に関する研究（そのI.冬季における数理化理論2条件に関する研究）,日本建築学会近畿支部研究報告集（計画系）、22号, pp.41-44, 1983。

3) 増江昌雄・桜井美政・野口孝太郎・松原省枝・中川嘉久・高橋和夫・松原誠二：室内環境要因の複合作用に関する研究（そのII.冬季における数理化理論2条件に関する研究）,日本建築学会近畿支部研究報告集（計画系）、22号, pp.45-48, 1982。

