In order to insulate buildings more efficiently, a lot of insulation methods have been proposed and successfully applied to the building envelope, including areas such as walls, windows and the others. However, it is also important to insulate the window frame efficiently because it usually exhibits the greatest heat loss. Authors purposed new dynamic insulation system at the window frames with an active ventilation function and a heat pump for heat recovery. This system is composed of three parts: window frames which use porous material for dynamic insulation, mechanical ventilation system, and heat recovery heat pump system. This paper describes a computational simulation study of the technical feasibility about the thermal insulation efficiency of porous material on the proposed system. First, the window frame was designed using a porous material such as the packed bed of particles (i.e. glass wool, mineral wool, aluminum particle, etc.). Then, to verify its thermal insulation efficiency, the temperature contribution of the window frame was evaluated using computer fluid dynamics with different coupled conditions, namely the indoor/outdoor pressure differences. In addition, to verify the condensation effect, the relative humidity in the porous material was calculated by outdoor condition such as air temperature, humidity ratio, indoor/outdoor pressure difference, and porosity dependence of insulation material. The calculated results show the thermal load was inversely proportional to the indoor/outdoor pressure differences. The condensation in the insulation material depends on the outdoor temperature, humidity ratio, and porosity.

Keywords: Dynamic insulation, Thermal insulation efficiency, Computational fluid dynamics

1. はじめに

地球温暖化は現在世界的に重要な問題のひとつであり、建築分野においてもこの問題は重要視され、特に建物で使用されるエネルギーデの削減が求められている。日本においては、エネルギー消費によるCO₂排出量は膨大なものとなっており、中でも家族愛からは全体の約14%の排出量となっているため、家庭によるエネルギー消費量削減は急務と言える。特に、既存住宅の大半は断熱性能が低く、暖冷房によるCO₂の排出量が著しく多くており、省エネルギーに伴う改修が必要とされる。しかし、私有の住宅数や改修数に関する推移は、既存住宅のスケジュールが戦後に現在まで増加傾向にあり、現在57,593,100戸に達しているが、省エネルギーに関する年間の改修工事は約0.025%（断熱改修工事：0.002%、太陽熱温水器の設置工事：0.004%、集中冷暖房設備の設置工事：0.001%、換・風取り替え工事：0.018%）にすぎない状況である。そこで本研究では、住宅における省エネルギー化という課題に対して、既存住宅の断熱改修を簡単実施する技術を開発することにより、断熱・気密レベルの低い住宅における断熱改修を促進させ、冷暖房用エネルギー使用量の削減を通じて、家庭部門のエネルギー消費を低減することを最終目標とし、その前段階としてダイナミックインシュレーション（dynamic insulation）を活用した住宅断熱改修の適用可能性を評価することを目的とする。

省エネルギー住宅の実現における鍵となるのは断熱性能・気密性能の向上であるものの、その結果として生じる建物の換気不足による室内空気汚染「IAQ（indoor air quality）」問題や、あるいはカビの発生による健康障害などの問題についても検討しなければならない。そのため、2003年7月から建築基準法が改正され、断熱性能基準とともに24時間換気を義務付けており、これに対応した様々な建築技術が考案されている。その中で、ダイナミック
ンシュレーションはポーラス断熱材から空気を導入する際、流入と逆方向の熱輸送が逆流量によって妨げられるのを利用したものです。断熱性能を持つ換気装置としても使用できるものである。このダイナミックインシュレーションは既に建物外壁に多く適用され、6, 7, 8, 9, 10, 11、12が検討されている。しかし、この技術は熱損失が大きな関口部及び関口部サッシ部分には適用されず、結露発生の危険性、熱負荷低減効果について定量的な分析を行っていない。そのため、住宅の新築・改修に積極的に適用されていないのが現状である。

2. 研究目的
以上ののような見地から本研究では、住宅の関口部サッシ部分を換気口として活用して新鮮空気を導入すること、気密性能を強化した関口部サッシ部分における断熱性能向上させ、関口部サッシからの熱損失を削減する新たなシステムを提案し、その適用可能性を検討する。特に、数値流体力学（CFD, computational fluid dynamics）シミュレーションを用い、含・冬期の断熱性能効果、ポーラス材内部と表面においての結露発生有無、室内熱負荷低減効果などに対して検討し、住宅への適用可能性を考察する。

3. 提案システムの概要
図1に提案システムの構成を示す。提案したシステムは、建物関口部サッシを外気導入換気口として活用することから着目したものである。技術要素として関口部サッシ部、24時間換気口、排熱回収型ヒートポンプの3つの要素で構成される。この3つの構成部分により、省エネ・エコ住宅もしくは年間エネルギーゼロ住宅設計の実現を可能にする。

(1) 関口部サッシ部
住宅で熱損失が最も高い関口部サッシ部分における外皮温度熱（熱損失）を削減するために、関口部サッシを覆うポーラス材（ダイナミックインシュレーション技術、図2参考）を使用する。本技術は、外気の新鮮空気が外気温度を抑えたポーラス材を通過して室内に入ることで、流入空気と逆方向の熱輸送を移流により妨げられるものである。その断熱性能は、式(1)の熱方程式に基づいて式(2)で計算され、冬期は熱損失を、夏期は熱得を抑えるものである。この際に、換気による換気負荷が生じるが、通常の換気システムによる外気導入時よりも、断熱材を通過する際に熱交換により、暖められた外気が導入されるため、換気負荷の低減にも貢献する。

\[
\frac{d^2T(x)}{dx^2} - u_p C_p \frac{dT(x)}{dx} = 0 \quad (u = 0 \text{の場合})
\]

\[
U_{sta} = \frac{1}{R} = \frac{k}{L} \quad (u = 0 \text{の場合})
\]

\[
U_{dyn} = \frac{1}{R} = \frac{u_p C_p}{w_p} \quad (u > 0 \text{の場合})
\]

ここで、\(k\) [W/(m·K)]は熱伝導率、\(T\) [K]は温度、\(u\) [m/s]は気流速度、\(\rho\) [kg/m^3]は空気密度、\(C_p\) [J/(kg·K)]は空気比熱、\(R\) [m^2·K/W]は断熱材の熱抵抗、\(U_{sta}\) [W/(m²·K)]は断熱材の熱貫流率（熱伝導のみ）、\(U_{dyn}\) [W/(m²·K)]はダイナミックインシュレーションの熱貫流率（熱伝導・逆導のみ）、\(L\) [m]は断熱材の厚さである。
(2) 24時間換気部
シックハウス対策として建築基準法で義務化された24時間換気計画基準に対応し、冬季の場合は第5種機械換気方式（exhaust ventilation）を採用し、室内を負圧に設定する。これにより開口部サッシからの外気量を確実に確保し、ヒートプンプの性能により換気設備の最小化ができ、冬季の場合、室内に流入される外気温度をより低い温度で蒸発させ換気が行う。排熱と新参会効果を期待され、影響のため、排熱の熱回収のためには活用できない。

4. 熱・水分数値解析
(1) 数値解析の概要
CFDシミュレーションを用いてボーラス材における熱・水分・空気移動解析を行い、提案システムの熱損失・取得低減効果及びボーラス材内部結露発生の有無を評価する。
① 検討対象空間
図3に示したように開口部サッシ部のみを検討対象空間とし、ヒートポンプの熱回収効果の検討を行う。検討対象区域における換気口の開口面積は10cmを、全面断面積は0.0816 m²とする。
② 数値境界条件
表1、表2に数値境界条件と材料の物性値を示す。ボーラス材の熱流率がほぼ0 W/m²となる通過速度は式(2)より、0.002 m/s以上である。ボーラス材の熱流率が10 Paになると、熱損失特性（慣性抵抗、粘性抵抗）を式(5)のErgun方程式12)に近似し、境界条件で利用する。このErgun式は、粒子状の材料の圧力損失予測に良く使われているものであり、材料工学、化学工学、農工学分野などにおける圧力低下的予測式として広く用いられている13, 14, 15。本報には、グラスワークを充填層として仮定して計算を行う。

$$\frac{dp}{dx} = 150.8 \left(1 - \frac{v}{u}\right)^2 \left(1 - \frac{v}{u}\right)^2 + 175.5 \left(1 - \frac{v}{u}\right)^2 \left(1 - \frac{v}{u}\right)^2$$ (3)

ここで，$$v$$は形状係数，$$u$$は空気流速，$$Dp$$[m]はポーラス材の粒子径，$$\mu$$[kg/(m·s)]は分子の粘性である。また，空気温は0.5，形状係数は1.0，粒子径は18.02 [kg/kgmol]と仮定する。
ボーラス材の熱伝導率は、ボーラス材が固体領域と気体領域で混合されている場合を想定し、式(4)の計算式で求める。空気

<table>
<thead>
<tr>
<th>項目</th>
<th>境界条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>計算領域</td>
<td>1.10 m(x) × 1.04 m(y) × 1.04 m(z)</td>
</tr>
<tr>
<td>計算格子</td>
<td>約500,000個</td>
</tr>
<tr>
<td>流れモデル</td>
<td>層流モデル</td>
</tr>
<tr>
<td>流入開口部</td>
<td>0.0816 m²(幅：2 cm、厚さ：10 cm)</td>
</tr>
<tr>
<td>開口部通過風速</td>
<td>表3の解析結果による</td>
</tr>
<tr>
<td>壁面</td>
<td>1.00 m(x) × 1.00 m(y)、断熱条件</td>
</tr>
</tbody>
</table>

表2 材料の物性値

空気	比熱	1006.43 [J/(kg·K)]
熱伝導率	0.0242 [W/(m·K)]	
粘性	1.79×10⁻³ [kg/(m·s)]	
分子量	28.97 [kg/kmol]	
水蒸気	比熱	2100 [J/(kg·K)]
熱伝導率	0.0558 [W/(m·K)] (液面領域)	
粘性	16 [kg/(m·s)]	
分子量	同上	
ボーラス材	空気透過率	0.5 [J/(m²·s·Pa)]
粘性抵抗	同上	
慣性抵抗	同上	
熱伝導率	同上	
粒子径	同上	
形状係数	1	

表3 解析結果による境界条件（室内外温湿度、室内外圧力差、ポーラス材の空気流速）

<table>
<thead>
<tr>
<th>項目</th>
<th>解析ケース1</th>
<th>解析ケース2</th>
<th>解析ケース3</th>
<th>解析ケース4</th>
<th>解析ケース5</th>
<th>解析ケース6</th>
</tr>
</thead>
<tbody>
<tr>
<td>運転モード</td>
<td>冬期運転</td>
<td>夏期運転</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>室内温度</td>
<td>22 [℃]</td>
<td>26 [℃]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>相対湿度</td>
<td>50 [%RH]</td>
<td>50 [%RH]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>室外温度</td>
<td>0[℃]</td>
<td>-10, -18, -16, -14, -12, -10, -8, -6, -4, -2, 0 [℃]</td>
<td>36 [℃]</td>
<td>26, 28, 32, 34, 36, 38, 40, 42, 44, 46 [℃]</td>
<td>36 [℃]</td>
<td></td>
</tr>
<tr>
<td>相対湿度</td>
<td>50 [%RH]</td>
<td>80 [%RH]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>室外結露圧力</td>
<td>0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10 [Pa]</td>
<td>-10 [Pa]</td>
<td>-10 [Pa]</td>
<td>0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10 [Pa]</td>
<td>-10 [Pa]</td>
<td>-10 [Pa]</td>
</tr>
</tbody>
</table>

<p>| ボーラス材の空間比 | 0.5 [J/(m³·s·Pa)] | 0.5 [J/(m³·s·Pa)] |</p>
<table>
<thead>
<tr>
<th>可変要素</th>
<th>室内外圧力差</th>
<th>外気温度</th>
<th>室内外圧力差</th>
<th>外気温度</th>
<th>ボーラス材の空気流速</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
陰率によるポーラス材の有効熱伝導率の変化曲線は図4に示す。この有効熱伝導率は、グラスウールの密度が16 kg/m³、空隙率が0.5の場合、0.004 W/(m·K)を基準値として仮定して設定する。また、本計算におけるポーラス材の密度による圧縮特性や空隙率の変化及ぼす材料な材で行う熱伝達現象（内部放射、内部対流）は検討対象から除外する。

さらに、水分の物質拡散係数は温度と水蒸気圧により式(5)で計算され、有効物質拡散係数は式(6)で計算（ポーラス材の空隙率が0.5の場合、有効物質拡散係数は1.40×10⁻⁶ m²/sとする）

\[k_{eff} = e \cdot k\text{fluid} + (1-e) \cdot k\text{solid} \] (4)

\[D = \frac{2.31 \times 10^{-5}}{T^{1.81} (P_s + P_r)} \] (5)

\[D_e = \frac{D_e}{\tau} \] (6)

ここで、\(k_{eff} \) [W/(m·K)]は有効熱伝導率、\(k\text{solid} \) [W/(m·K)]は個体間の熱伝導率、\(k\text{fluid} \) [W/(m·K)]は気体領域の熱伝導率、\(P_s \) [Pa]は空気圧、\(P_r \) [Pa]は水蒸気圧、\(D \) [m²/s]は物質拡散係数、\(D_e \) [m²/s]は有効物質拡散係数、\(\tau \)は圧縮率、\(r \)は挙げ率である。

③ 数値解析のケース

解析ケースとしては表3に示すように冬期・冬期運転モードにそれぞれ分け、室内・外の圧力差、外気温度、ボーラス材の空隙率の変化により6パターンの検討を行う。

解析ケース1、4の室内・外の圧力差による解析は、室内・外の圧力差を1 Paから10 Paまで変化させながら検討する。この際、室内・外の温度条件は室温に設定し、外気温度を変化させている。解析ケース2、5の外気温度による解析は、室内温度条件を夏季の場合に設定し、外気温度を変化させながら検討する。この際、室内・外の圧力差は10 Paに固定する。解析ケース3、6のボーラス材の空隙率による解析は、空隙率を0.1まで0.1ずつ変化させてに検討する。この際、室内・外の温度条件は室温に設定する。

(2) 数値解析の結果

① 室内・外圧力差による検討結果

図5 冬期における室内・外圧力差による計算結果（解析ケース1）

図6 冬期における室外温度による計算結果（解析ケース2）

図7 冬期におけるボーラス材の空隙率による計算結果（解析ケース3）
夏・冬期における、室内・外圧力差による温度分布の計算結果を図5(a), 図8(a)にそれぞれ示す。冬期において、室外側の空気はポーラス材を通過する際に徐々に温められ、夏期においては徐々に冷やされることがわかる。また、室内・外圧力差が大きくなることで、ポーラス材への空気流入側における温度勾配が減少、つまり伝導による熱の移動が抑制されることが確認された。一方、冬期の場合、室内・外圧力差が大きくなると、室内外に換気量が大きくなり、室内表面温度と室内空気温度の差が大きくなるため、室内におけるコールドドライブなどの温熱環境への影響が予想される。しかし、外気温度がそのまま入る一般換気方式により、非常に省エネルギー的であり、ヒートポンプを用いて第3種換気方式からの排熱を回収することで、暖房エネルギーゼロ住宅の実現の可能性がある。

図5(b), 図8(b)に室内・外気温度制御におけるポーラス材内部の相対湿度分布の計算結果を示す。全体的なパターンにおいて結露発生は見られないことが確認された。夏期の逆転結露においても室内を加圧するため、内部結露は生じないことが確認された。室内外の圧力差が増すことで、ポーラス材内部における相対湿度は低減し、内部結露発生の危険性が低くなる。これら、夏・冬期ともに低湿度空間から高湿度空間への空気流動のためである。

図5(e), 図8(c)に室内・外気温度制御におけるポーラス材内部の絶対湿度分布の計算結果を示す。室内外圧力差が大きくなると空気流動の流れ側において、湿度勾配が大きくなることが確認された。これは、熱拡散よりも物質拡散が遅れるためであると考えられる。そのため、温度上昇に伴い結露発生も上昇するため結露の危険性は低下する。

2 室外温度による検討結果

室内・外気温度を10 Pa一定時における、室内温度による温度分布の計算結果を図6(a), 図9(a)に示す。冬期の場合、室内外気温度差を増加させるほど、室内外部温度と室内空気温度の差が大きくなった。しかし、外気温度をそのまま換気に使うことにより、換気負荷を低減することができる。省エネルギーの側面として良い性能の確保が可能であると考えられる。その関係は1次線形関係になり、下記の式で示す。反面、夏期の場合は、室外空気がそのまま流入、換気負荷を低減する効果は見込めず、開口部サッシ部からの熱吸収量は0 W/m²に抑える。

\[T_{di} = 0.655 \times [T_{indoor} - T_{outdoor}] + 0.653 + T_{outdoor} \] (7)

図8 夏期における室内・外圧力差による計算結果（解析ケース4）

図9 夏期における室外温度による計算結果（解析ケース5）

図10 夏期におけるポーラス材の空気流による計算結果（解析ケース6）
ここでは、\(T_{\text{outdoor}} \) [°C]は外気温度、\(T_{\text{indoor}} \) [°C]は室内温度、\(T_a \) [°C]は室内に供給される温度である。

図 6(b), 9(b)に室内・外の圧力差固定時におけるポラス材内部の絶対湿度分布の計算結果を示す。冬期において外気温度が下がるほどポラス材の結露発生可能性が高まるが、全解析パターンにおいて結露発生は見られないことが確認された。

図 6(e), 9(e)に室内・外の圧力差固定時におけるポラス材内部の絶対湿度分布の計算結果を示す。ポラス材中は、流入側から流出側近傍までおよび流出側の絶対湿度である。そのため流出側近傍では絶対湿度が大幅に増大するほど大きくなる。

③ ポラス材の空気量による検討結果

ポラス材の空気量による温度分布の検討結果を図 7(a), 10(a)に示す。空気量が増加するほどダイナミックインシュレーション効果がよりよく、断熱性能も上がることが確認された。本研究の設定検討条件においては、空気量が 0.5 以上になると熱損失・取外気が 0 に近づいた。

図 7(b), 10(b)に室内・外の圧力差及び室内・外気温固定時における空気量によるポラス材内部の絶対湿度分布の計算結果を示す。本研究で示したポラス材においても、全解析パターンにおいて結露発生は見られないことが確認された。

図 7(c), 10(c)に室内・外の圧力差及び室内・外気温固定時における空気量によるポラス材内部の絶対湿度分布の計算結果を示す。ポラス材の空気量が増大するほど、有効気体拡散係数も増大され、湿気が内に吸収されることが確認された。

5. 室内・外気温の換気量

室内・外気温を固定した場合、室内・外圧力差により室内に入る換気量とポラス材の空気量による室内に入る換気量をそれぞれ図 11(a), 11(b)に示す。空気量を 0.5 にして計算した場合、室内・外圧力差が最大時の 10 Pa においても換気量は 0.6 m³/h 以下となり、そのため、今回の条件下で建築基準法によって定められた換気量 0.5 回/h「部屋の広さ 6 ㎡（≈10 m²）基準、約 12.0 m³/h」を満たすことは難しく、別途換気口を設けるか、開口部サッシ部分の拡張および新たなポラス材の検討・開発が必要となってくる。室内・外圧力差を 10 Pa にして計算した場合、空気量が約 0.77 になった時、約 12.0 m³/h の換気量を確保することができた。

6. ポラス材における熱損失・取外量

図 12 に解析結果から得られたポラス材からの熱損失・取外量を示す。図 12(a)に示したように室内・外圧力差が大きくなると、ポラス材からの熱損失量は夏期・冬期ともに増加した。これは、ポラス材を通過する空気の増加によって熱伝導による熱損失が改善によって増加したためである。つまり、室内外圧力差の増加により、ポラス材の断熱性能（熱損失・取外量の減少）が向上する。

逆に、図 12(b)に示したように、室内・外気温差が大きくなるとその断熱性能は下がった。これは、室内・外気温差によって熱伝導による熱損失が大きくなったからである。また、図 12(c)に示したように、ポラス材の空気量が大きくなると断熱性能が向上することがわかる。

7. まとめ

本研究では、断熱改修の実用化を進め、ダイナミックインシュレーションを住宅の開口部サッシ部分に適用した新たな住宅断熱改修システムを提案し、その断熱性能及びポラス材内部の結露有無、なる条件下においての熱負荷低減性について評価した。評価結果から以下の知見が得られ、提案したダイナミックインシュレーションを用い、開口部サッシ部分を換気口として活用する住宅改修技術の適用可能性が非常に高いと考えられる。

(1) 我が国の住宅改修用の外気温・湿度の条件下で室内・外圧力差を変化させた場合（解析ケース 1, 4）、ポラス材内部に結露は発生しないことが確認された。また、室内・外圧力差の増大とともに、冬期の熱損失が夏期の熱得失を大幅に削減され、ダイナミックインシュレーションの断熱に関する効果が確認された。

(2) 室内・外圧力差を 10 Pa に固定して室内気温・湿度の条件を変化させた場合（解析ケース 2, 4）、室内空気温度は外気温度と 1 次式で表現可能なことが分かった。また、全ての条件下、ポラス材の内部結露の発生危険性がなかった。

図 11 は異なる条件による換気量の変化を示す。
(3) ポーラス材の空隙率の変化により検討した場合(解析ケース 3、6)，空隙率が 0.5 以上になると熱損失・取得率が 0 に近づき，その
断熱性能が確保された。また，密度の低下 6 倍を満たすためには，
空隙率が 0.77 以上となるポーラス材が必要であるが，別途換気口が
あれば建築基準法で義務付けられた 0.5 回/h の必要換気量に対応
可能になると考えられる。

(4) ポーラス材における断熱性能(冬期の熱損失・夏期の得熱量)
を検討した結果，室内・外の圧力差が大きく，室内・外温度差が小さ
く，ポーラス材の空隙率が大きくなるほど，伝導による断熱性能
が上がることが分かった。

(5) 今後は，異なる特性(圧力降下，透過度，空隙率など)を持つ
ポーラス材(グラスウール，ミネラルウール，木の繊維など)におけ
る断熱性能の検討，コールドドラフトによる室内換気環境へ及び
す影響の検討，日射が断熱性能に及ぼす影響の検討，システムの適
用地域による省エネルギー効果，ヒートポンプ導入による省エネル
ギー効果，外部圧力が室内換気量確保に及ぼす影響などについて検
討する。また，提案システムの変更により，開口部サッシ部分だけ
ではなく，窓壁，壁面に適用した場合に対しても検討する予定であ
る。

謝辞

本研究は，環境省「平成 22 年地球温暖化対策技術開発事業」採
択研究の一環として実施されたものであり，この場を借りて謝意を
申し上げる次第である。また，本研究は，(株) 三協立山アルミとの
共同研究により取組まれたものであり，同社の野村様，森様，大貫
様，佐藤様には，多大な御協力，御助言，御指導を賜りました。こ
に記して謝意を表します。

記号

k
T
µ
ρ∞
Cp
R
U_{	ext{dyn}}
U_{	ext{os}}
φ
r
D_p
μ
κ_{\text{os}}
κ_{\text{gas}}
P_	ext{a}
P_i
D
D_i
δ
τ
T_{\text{ambient}}
T_{\text{indoor}}
T_{\text{outdoor}}

熱伝率 [W/(m K)]
温度 [K]
気流速度 [m/s]
空気密度 [kg/m³]
空気比熱 [kJ/kg K]
断熱材の熱抵抗 [m²K/W]
ダイナミックインシュレーションの熱貫流率 [W/(m²K)]
断熱材の熱貫流率 [W/(m²K)] (熱伝導のみ)
ポーラス材の厚さ [m]
形状係数 [-]
ポーラス材の空隙率 [-]
ポーラス材の直径 [m]
分子の粘性 [kg/(m s)]
有効熱伝率 [W/(m K)]
個体領域の熱伝導率 [W/(m K)]
気体領域の熱伝導率 [W/(m K)]
空気圧 [Pa]
水蒸気圧 [Pa]
物質拡散係数 [m²/s]
有効物質拡散係数 [m²/s]
圧縮率 [-]
換気率 [-]
外気温度 [°C]
室内温度 [°C]

注
注 1) 2008年度のCO₂排出量（約12億1,400万トン）の内訳の中で，家
庭，各所からの給湯を対象とする。
注 2) 住居の改修工事に関する種目別比率は，2006年度の国土交通省による
増改築・改装等の実態調査結果であり，年間平均値である。

参考文献
1) 独立行政法人国立環境研究所：日本国温室効果ガスインベントリ報告書，
2010
2) 総務省：平成 20年住宅・土地統計調査，2010.03.30 公表
3) 国土交通省総合政策局情報安全・調査課建築統計課：増改築・改装等実態
調査（平成 18年），2008.10.29 公表
4) 建築基準法施行令第 20 条の 8：居室を有する建築物の換気設備について
のホームアドバイスに関する技術的基準，2003
5) A. Dimoudi, A. Androustopoulos, S. Lykoudis：Experimental work on a
linked, dynamic and ventilated, wall component, Energy and Buildings
56, pp.443-453, 2004
6) Arvid Dalehag, Akira Fukushima, Yoshinori Honma：Dynamic
insulation in a wall, 日本建築学会北海道支部研究報告集，No.66, pp.
261-264, 1993
7) M. S. Imbabi：Modular breathing panels for energy efficient, healthy
8) J.M. Wong, F.P. Glasser, M.S. Imbabi：Evaluation of thermal
conductivity in air permeable concrete for dynamic breathing wall
construction, Cement & Concrete Composites 29, pp.647-655, 2007
9) Gushui Gan：Numerical evaluation of thermal comfort in rooms with
10) L. Jensen：Energy impact of ventilation and dynamic insulation,
Proceeding of the 14th AIVC conference, Copenhagen, Denmark,
pp.251-260, 1993
12) Sabri Ergun： Fluid Flow Through Packed Columns, Vol. 48, No. 2,
Chemical Engineering Progress, pp.89-94, 1952
13) M. Mayerhofer, J. Govaerts, N. Parmentier, H. Jeannart, L. Helsen:
Experimental investigation of pressure drop in packed beds of
irregular shaped wood particles, Powder Technology, Volume 205,
pp.251-260, 2009
14) 浅野勇，林田洋一，増川晋，田口秀和：ポーラスコンクリートを通過す
る流れの流速と水と水の間の関係，農工技術報 210, pp.227-241, 2009
15) 井上隆一，大塚光俊，村上博幸，杉本光洋，雁良：大豆の品質及価格調
集に関する研究，中央農業研報，pp.1-49, 2003
16) P. Grathwohl： Diffusion in natural porous media, Contaminant
transport, sorption / desorption and dissolution kinetics, Kluwer
Academic Publishers, 1998
17) W.P. Boynton, W.H. Brattain： Interdiffusion of gases and vapors (1st
edition), International Critical Tables of Numerical Data Physics,
1929
18) Schirmer, R. : The diffusion coefficient water vapour-air mixtures and
the rate of evaporation, VDI Be ihaft Verfahrenstechnik 6, 1938
19) 井上隆一，大塚光俊，村上博幸，杉本光洋：大豆の品質及価格調
集に関する研究，中央農業研報，pp.1-49, 2003
20) Schirmer, R. : The diffusion coefficient water vapour-air mixtures and
the rate of evaporation, VDI Be ihaft Verfahrenstechnik 6, 1938
21) 空気調和・衛生工学会：空気調和設備計画設計の実務の知識改訂 2 版，pp.
109-111, 2002

（2010年10月10日掲載，2011年8月17日採用決定）