DISCUSSION ON THE RISK OF HEATSTROKE DETERMINED WITH ACCIDENTS DATA OCCURRED DURING CLUB ACTIVITY IN SECONDARY/HIGH SCHOOLS

Study on the relationship between outdoor climate conditions and the accidents in schools (Part 4)

Go IWASHITA

The frequencies and characteristics of heatstroke occurred in secondary/high schools were investigated by using the data of NAASHI (National Agency for the Advancement of Sports and Health), and analysis was done for a period of 10 years from 2005 to 2014. The investigated cities were Sapporo City, Sendai City, Tokyo City, Nagoya City, Osaka City, Hiroshima City, Fukuoka City, Kumamoto City and Kagoshima City in Japan. As it can be seen in the number of heatstroke occurred during each class schedule, the frequencies of heatstroke during the athletic club activities were appreciably high for schoolyard and in gymnasium. The accidents of heatstroke on schoolyard during athletic club activities, physical education, and field day occurred most frequently at the grade of 31 °C WBGT. The frequencies of heatstroke occurred in gymnasium during athletic club activities passed its peak at the grade of 31 °C WBGT as well. If the number of accident during each club activity is divided by the population of the concerned club, the determined accident ratio in gymnasium during female badminton club was the considerably the highest. Although badminton is played in gymnasium, the risk level during badminton under hot and humid condition would be equal to that of baseball or rugby on schoolyard based on the above results of WBGT.

Keywords: Accidents in schools, Heatstroke, Club activity, Secondary school, High school

1. はじめに

学校環境で発生した熱中症と発生時の近隣気象条件データを用いた温熱要因との関係を、札幌市、仙台市、東京、名古屋市、大阪市、

広島市、福岡市、熊本市、鹿児島市の九都市の小中学校について2005～2011年のデータを用いて本報その3で考察した。その結果、小

c 中学校の校庭で発生した熱中症数の学校数内で発生した熱中症数

に占める割合は63.8％、体育館は24.4％、校舎内は7.9％、プール

は2.4％であった。場合別の学校内熱中症発生を見ると、課外体育

部活動中の熱中症発生数の学校内で発生した熱中症数に占める割合

が、60.2％で最も高く、体育行事中が12.4％、体育授業中が10.2％。

課内体育クラブ活動中が1.9％であった。課外体育活動は中学校

で顕著に多いため、学校数内における中学校の熱中症発生数の小

学校における熱中症発生数に対する割合は367.0％であった。

そこで、本報その4では課外体育活動が顕著である中学校および

高等学校における熱中症発生に着目し、熱中症発生時の屋外環境要

素の値との関係を考察することにする。

2. 調査方法

2.1 調査対象地域および対象年度

学校管理下における熱中症の発生を調査する地域は、札幌市、仙

台市、東京都区部および市部（以下「東京」と称す）、名古屋市、大

阪市、広島市、福岡市、熊本市、鹿児島市の九都市であり、学校は

中学校と高等学校（全日制）を対象とする。解析に用いる事故デー

タは独立行政法人日本スポーツ振興センター（以下、スポーツ振興

センターと称す）の災害共済給付オンライン請求システムデータで

* 東京都大学工学部建築学科　教授・工博

Prof., Dept. of Architecture, Tokyo City University, Dr.Eng.
2.2 事故データと気象データのマッチング

本研究では前報 1) の手法に従い、上述したスポーツ振興センターの事故データに記載されている個々の熱中症事故の発生目時、発生場所の最寄りの気象台における、発生日時の屋外気象状況を気象データから抽出しマッチングさせる手法を用いた。気象データは気象庁監修の「気象データベース・地上観測」の2005～2014年時刻別データを用いた。事故データは1分単位で事故発生時刻が記載されているが、上記気象データは1時間間隔である。そこで、事故データの発生時刻を1時間間隔に丸め、気象データとのマッチングを行った。マッチング作業により、屋外気象条件と中小学校における事故発生と関係が見いだされることになるが、たとえば教室で発生した熱中症であれば屋外気象条件から熱中症の発生頻度を考察することとは、気象計測ポイントと事故発生ポイントの位置のズレを除けば、合理的な手法と考えられる。一方、教室や体育館内での起こった熱中症の場合、最も影響の大きいのは室内溼気居であるが、本研究では室内で発生した熱中症についても、申込 2) と同様に屋外気象要素を用いて考察を行う。したがって屋外気象条件と熱中症事故の発生状況との関係は、本研究においては因果関係ではなく相関関係と捉えて捉えている。

3. 調査結果

3.1 対象地域別熱中症件数

<table>
<thead>
<tr>
<th>市町村</th>
<th>No. accidents</th>
<th>No. students</th>
<th>No. accidents</th>
<th>No. students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sapporo City</td>
<td>45959</td>
<td>42349</td>
<td>51049</td>
<td>81913</td>
</tr>
<tr>
<td>Sendai City</td>
<td>39</td>
<td>87</td>
<td>122</td>
<td>456</td>
</tr>
<tr>
<td>Tokyo</td>
<td>303</td>
<td>128</td>
<td>3154</td>
<td>197</td>
</tr>
<tr>
<td>Nagoya City</td>
<td>2005</td>
<td>302</td>
<td>171</td>
<td>95</td>
</tr>
<tr>
<td>Osaka</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fukuoka City</td>
<td>78539</td>
<td>37071</td>
<td>61458</td>
<td>47284</td>
</tr>
<tr>
<td>Hiroshima City</td>
<td>3007</td>
<td>27317</td>
<td>41987</td>
<td>35857</td>
</tr>
<tr>
<td>Okayama City</td>
<td>171</td>
<td>43</td>
<td>125</td>
<td>60</td>
</tr>
<tr>
<td>Kagoshima City</td>
<td>74</td>
<td>14</td>
<td>39</td>
<td>6</td>
</tr>
<tr>
<td>S.S.</td>
<td>59579</td>
<td>455189</td>
<td>284175</td>
<td>31279</td>
</tr>
<tr>
<td>H.S.</td>
<td>412349</td>
<td>51049</td>
<td>81913</td>
<td>122</td>
</tr>
<tr>
<td>C.C.A.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C.ES.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>月</th>
<th>No. accidents</th>
<th>No. students</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>February</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>March</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>April</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>June</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>July</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>August</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>September</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>October</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>November</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>December</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

後記の表1に示す。表1の右列には対象地域の総計（Sum）を示す。表1の三行目には熱中症を含むすべての事故発生数（No. accidents）が各都市毎に中学校（S.S.）、高校（H.S.）別に示されている。ここで表示されている事故数はスポーツ振興センター事故データに示された学校管理下の事故総数であるため、修学旅行、休校、遠足、遠征等の学外での事故も含まれている。同様に四行目に示されている熱中症の発生数（No. heatstroke）も、学外で発生した熱中症も含まれている。また五行目に示された生徒数（No. students）、学校基本調査に掲載されている各都市の2005～2014年における中学生数、高校生（全年制）数の各べの人数である。 psychosis 以下のデータはすべて学校教室内で発生した熱中症であり、学校教室内とは、教室、プール等の教室外の設備および教室、廊下、階段等の校舎内の施設からなる校舎教室内のすべての施設を対象としている。

表1をみると、学校外を含めた熱中症の発生件数（1627+2192）のすべての事故件数（530371+385076）に占める割合は0.62%であり、前報 1) で報告した小学校における割合の0.66%を大きく上回っている。表1の十行目には校舎内（school house）で発生した熱中症を示す。校舎内には教室、廊下、階段、昇降口等の校舎の中の室が含まれているが、体育館（gym）は含まれていない。表1をみると、学校教室内で発生した熱中症数に占める、校庭発生から発生した熱中症の割合は64.9%、体育館は25.3%、校舎内は6.6%、プールは1.1%となっている。前報 1) の小学校では、これらの割合は順に、61.0%、19.0%、12.8%、5.6%となっており、中学校は小学校に比べ、校庭および体育館で割合が高くなっている。

場合別（Occasion）の学校内熱中症発生をみると、学校教室内で発

Table 1 Number of accidents and heatstroke occurred in secondary and high schools in the studied cities

<table>
<thead>
<tr>
<th>市町村</th>
<th>No. accidents</th>
<th>No. students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sapporo City</td>
<td>45959</td>
<td>42349</td>
</tr>
<tr>
<td>Sendai City</td>
<td>39</td>
<td>87</td>
</tr>
<tr>
<td>Tokyo</td>
<td>303</td>
<td>128</td>
</tr>
<tr>
<td>Nagoya City</td>
<td>2005</td>
<td>302</td>
</tr>
<tr>
<td>Osaka</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fukuoka City</td>
<td>78539</td>
<td>37071</td>
</tr>
<tr>
<td>Hiroshima City</td>
<td>3007</td>
<td>27317</td>
</tr>
<tr>
<td>Okayama City</td>
<td>171</td>
<td>43</td>
</tr>
<tr>
<td>Kagoshima City</td>
<td>74</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>月</th>
<th>No. accidents</th>
<th>No. students</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>February</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>March</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>April</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>May</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>June</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>July</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>August</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>September</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>October</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>November</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>December</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

--50--
Table 2 Heatstroke rate occurred in various locations and for various occasions at school

<table>
<thead>
<tr>
<th></th>
<th>Sapporo C.</th>
<th>Sendai C.</th>
<th>Tokyo</th>
<th>Nagoya C.</th>
<th>Osaka C.</th>
<th>Hiroshima C.</th>
<th>Fukuoka C.</th>
<th>Kumamoto C.</th>
<th>Kagoshima C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.S.</td>
<td>H.S.</td>
<td>S.S.</td>
<td>H.S.</td>
<td>S.S.</td>
<td>H.S.</td>
<td>S.S.</td>
<td>H.S.</td>
<td>S.S.</td>
<td>H.S.</td>
</tr>
<tr>
<td>heatstroke at school area</td>
<td>36.8</td>
<td>96.7</td>
<td>299.1</td>
<td>178.0</td>
<td>76.3</td>
<td>101.9</td>
<td>210.4</td>
<td>238.7</td>
<td>296.4</td>
</tr>
<tr>
<td>schoolyard</td>
<td>28.6</td>
<td>35.2</td>
<td>168.9</td>
<td>99.3</td>
<td>46.5</td>
<td>68.6</td>
<td>144.6</td>
<td>158.1</td>
<td>191.1</td>
</tr>
<tr>
<td>gym</td>
<td>2.0</td>
<td>43.9</td>
<td>77.4</td>
<td>54.8</td>
<td>23.3</td>
<td>25.2</td>
<td>46.0</td>
<td>62.0</td>
<td>69.2</td>
</tr>
<tr>
<td>school house</td>
<td>6.1</td>
<td>8.8</td>
<td>49.3</td>
<td>20.5</td>
<td>3.9</td>
<td>4.0</td>
<td>8.2</td>
<td>14.0</td>
<td>22.6</td>
</tr>
<tr>
<td>A.C.A.</td>
<td>16.3</td>
<td>46.1</td>
<td>207.6</td>
<td>112.9</td>
<td>58.3</td>
<td>75.7</td>
<td>161.1</td>
<td>158.1</td>
<td>197.1</td>
</tr>
<tr>
<td>P.E.</td>
<td>10.2</td>
<td>15.4</td>
<td>14.1</td>
<td>17.1</td>
<td>7.2</td>
<td>3.0</td>
<td>21.4</td>
<td>47.4</td>
<td>10.5</td>
</tr>
<tr>
<td>field day</td>
<td>4.1</td>
<td>8.8</td>
<td>21.1</td>
<td>27.4</td>
<td>6.6</td>
<td>14.1</td>
<td>21.4</td>
<td>60.5</td>
<td>48.1</td>
</tr>
<tr>
<td>C.C.A.</td>
<td>6.1</td>
<td>0.6</td>
<td>7.0</td>
<td>6.8</td>
<td>0.3</td>
<td>4.0</td>
<td>3.3</td>
<td>9.3</td>
<td>18.1</td>
</tr>
<tr>
<td>C.F.</td>
<td>0.0</td>
<td>11.0</td>
<td>7.0</td>
<td>10.3</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>1.6</td>
<td>3.0</td>
</tr>
</tbody>
</table>

P.E.: Physical Education C.F.: Cultural Festival

生した熱中症数占める、課外体育活動（A.C.A.) 中の熱中症発生数の割合が69.8%であった。体育活動中（field day）が14.0%，体育授業中（P.E.) が6.4%，課外文化活動（C.C.A.) が2.8%，文化祭（C.F.) が1.2%となっている。

表 1 の学校敷地内で発生した熱中症の月別のデータを見ると、7月新学期中の63.6%，8月が28.9%，9月が13.5%と続いており、夏期休憩中である8月の発生率が高くなっている。これは中学校では課外体育活動中の熱中症発生が多いからであり、前報①で報告した、小学校における8月の熱中症発生割合が4.5%との大きな差となって表れている。しかし、人体の嗜好への適応への影響を考察するために、今後、時系列の環境条件の効果を必要とする。

対象都市は当然のことながら、在住徒歩者が表 1 に示すように異なり、国政府のの熱中症発生地域を効果的に評価するために、学校敷地内発生熱中症を熱中症の発生数を当該地域の児童生徒数で除し10万人を乗じたものを熱中症発生率（heatstroke rate）と称し、表 2 に示した。

表 1 の三行目に学校敷地内での熱中症発生数（heatstroke at school）が示されているが、中学校、高校ともに熊本市の発生率が最も高くなっている。熊本市は前報①で報告した小学校においても、対象都市の中で最も熱中症発生が多いとなっている。仙台市、名古屋市、大阪市、広島市、福岡市、鹿児島市の学校発生率が200～400 とは近い値となっているが、高校における発生数は、これらの都市間で差が大きい。一方、東京の中高学校敷地数を除いた他都市よりも低い発症発生率となっており、この熱中症発生数の高い都市は一部で影響していると思われる。

3.2 外気温と熱中症発生数との関係

図 1 に示した調査対象都市（中学、校庭、体育館、校舎内における外気温階別熱中症発生件数を図 1 に示す。各熱中症発生時の外気温データは2.2 節で記述した事故データと気象データのマッチングによって得られた値である。図 1 で気温は3℃毎の階段に分かれて、例えば24℃以上で事故が発生したデータは、22.5℃超と25.5℃以下までの屋外気温の環境で発生した熱中症発生件数である。なお、体育館および校舎内での熱中症発生件数は校庭に比べ少ないため、図中では体育館発生件数を2倍、校舎内発生件数を5倍した件数を表示している。

図 1 を見ると外気温21～30℃の階級において、校庭および体育館では外気温上昇とともに熱中症発生件数が増大していることがわかり、校舎内においても外気温21～30℃の階級において、外気温の上昇につれ発生件数が増大する傾向がみられる。外気温36℃階級において校庭、体育館、校舎内すべての熱中症発生件数が減少しているが、これは36℃階級（34.5～37.5℃）の外気温が発生した回数の少なさ、および36℃階級の外気温での作業の負担が原因として考えられる。

中高生は36℃以上の外気温が発生していると報告しているが②、図 1 を見ると、25℃以上（27℃階級以上）における校庭発生件数は127件で校庭発生件数1430件の8.5%となっている。また、25℃以上の体育館発生件数は456件で体育館発生件数総数557件の81.9%、25℃以上の校舎内発生件数は105件で校舎内発生件数総数150件の71.3%を占めている。

Fig.1 Number of heatstroke as a function of the outdoor temperature

外気温階級と熱中症発生オッズ比との関係を図2に示す。オッズとは見込みのことで、ある事象が起こる確率 p のその事象が起こらない確率 (1-p)に対する比 p/(1-p)を意味する。別の事象が起こる確率 q を与えると、その事象のオッズは次に与えられる。オッズ比 ORはこれら2つのオッズの比のことである。\[
\text{OR} = \frac{p/(1-p)}{q/(1-q)}
\]

で示される。ここで用いる確率値は熱中症発生値であり、外気温の各階級毎の熱中症発生件数を調査対象都市の2005～2014年に中高生発生数を除すことによって求めた。

各外気温階級に対するオッズ比を求めること、外気温21℃の階級における熱中症発生オッズを基準として、それに対する各階級のオッズ比として求めた。たとえば外気温30℃における、基準階級である外気温21℃に対するオッズ比は1.17である。各外気温階級の熱中症発生件数、p に 30℃以下の熱中症発生件数、q に 21℃階
線の熱中症発生率を代入して求めた。
表3には、図2に示した外気温階級別オッズ比の95%信頼区間を示した。
95%信頼区間の範囲が1を含んでいなければ、その区間のオッズ比と基準階級のオッズ比（1.0）との間に5%水準で有意差があるといえる。表3の95%信頼区間をみると、校舎および体育館はどの外気温区間においても、オッズ比は基準階級（21°C）のオッズ比（1.0）との間に有意な差があることがわかる（p<0.05）。校舎内では27°Cおよび36°C階級以外は基準階級と有意差があった。

【図2】オッズ比の外気温温度対応関係

Table 3 Odds ratio between the reference outdoor temperature and selected outdoor temperature

<table>
<thead>
<tr>
<th>Outdoor Temp. (°C)</th>
<th>schoolyard</th>
<th>gym</th>
<th>school house</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odds ratio</td>
<td>95% CI</td>
<td>Odds ratio</td>
<td>95% CI</td>
</tr>
<tr>
<td>21</td>
<td>1.00</td>
<td>0.68～1.48</td>
<td>1.00</td>
</tr>
<tr>
<td>24</td>
<td>2.16</td>
<td>1.54～3.02</td>
<td>2.60</td>
</tr>
<tr>
<td>27</td>
<td>2.58</td>
<td>2.30～2.90</td>
<td>2.65</td>
</tr>
<tr>
<td>30</td>
<td>2.86</td>
<td>3.63～13.35</td>
<td>1.85</td>
</tr>
<tr>
<td>33</td>
<td>3.00</td>
<td>6.72～12.05</td>
<td>1.85</td>
</tr>
<tr>
<td>36</td>
<td>3.84</td>
<td>1.15～2.33</td>
<td>1.85</td>
</tr>
</tbody>
</table>

*CI: Confidence Interval

3.3 WBGTと熱中症発生数との関係

前報1）に引き続き、屋外気象の総合温熱指標としてWBGT（Wet-Bulb Globe Temperature）を用いることにする。本研究では気象データに示された各外気気象要素を用いてWBGTを推定することになった。気象要素からWBGTを推定する式は、中井ら4）、高市ら5）、小野ら6）、登内・村山7）によって提案されているが、本研究では、乾球温度、相対溼度、全天日射量からWBGTを推定する小野らの式（式（2））を用いることにした。小野らは2003年8月～2004年5月の10カ月間の時刻別データを用いて重回帰分析を行い（式2）式を得ている。屋内のある体育館および校舎内の場合は「屋内で日射がない場合」のWBGT式を用いるのが通常である。本研究の場合、刺激－応答の関係を維持するWBGTと熱中症発生を捉えるのではなく、屋外気象要素から推定される、屋内発生の熱中症について着目しているため、体育館および校舎内の場合も、屋外WBGT推定法を用いて考察を行った。

\[WBGT = -3.510 + 0.741 \times T_d + 0.035 \times RH + 0.00287 \times T_d \times RH + 3.644 \times S \] (2)

ここで T_d: 乾球温度（°C）、RH: 相対溼度（%）
S: 全天日射量（kW/m²）

図3に調査対象都市の中高におけるWBGT階級別熱中症頻度を示す。WBGTは3°C間隔の階級に区分され、例えば、22°Cの階級軸に示されたデータは、19°C超から22°C以下までのWBGT環境下で発生した熱中症件数である。中井らはWBGT24°C以上で発中症が発生すると報告しているが6)、WBGT24°Cにおよばない25°C階級（22.5°C超25.0°C以下）における校舎熱中症発生数は1281件で校舎熱中症総数の89.8%を占めている。この屋外WBGTを屋内である体育館および校舎に用いると、WBGT25°C階級以下の体育館熱中症発生数は483件で体育館発熱中症総数の86.7%を、校舎内熱中症発生数は126件で総数の84%を占めている。

【図3】WBGTと熱中症発生数の関係

Table 4 Odds ratio between the reference WBGT and selected WBGT

<table>
<thead>
<tr>
<th>WBGT (°C)</th>
<th>schoolyard</th>
<th>gym</th>
<th>school house</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odds ratio</td>
<td>95% CI</td>
<td>Odds ratio</td>
<td>95% CI</td>
</tr>
<tr>
<td>22</td>
<td>1.00</td>
<td>0.74～1.36</td>
<td>1.00</td>
</tr>
<tr>
<td>25</td>
<td>2.28</td>
<td>1.76～2.98</td>
<td>1.59</td>
</tr>
<tr>
<td>28</td>
<td>4.22</td>
<td>3.32～5.27</td>
<td>4.23</td>
</tr>
<tr>
<td>31</td>
<td>7.09</td>
<td>5.62～8.93</td>
<td>4.92</td>
</tr>
</tbody>
</table>

図4にWBGTと熱中症発生オッズ比との関係を、表4に各WBGT階級におけるオッズ比の95%信頼区間を示した。表中のpは相関係数を示す。日本体育学会6)が、ほぼ安全とされている21°Cを含む22°C階級におけるWBGTを基準として、図4および表4では各WBGT階級のオッズ比を求める。「原則として運動中止」の31°C階級を上回る34°C階級は図から除外した。表4を見ると校舎内の25°C階級以下のどの階級においても基準階級（22°C）との間に有意差がある。

3.4 場合別の発症状況

学校敷地内（校舎、体育館、校舎）で発生した熱中症について、スポーツ振興センターの事故データに記載されている発生時の場合別にまとめたものを表5に示す。体育部活動（A.C.A.）中の熱中症
が、校庭、体育館、校舎のどこにおいても多い。校庭での体育活動中の熱中症は男子（m）が女子（f）の三倍近く発生しているが、体育館では女子の熱中症発生数の方が男子よりも多くなっている。

Table 5 Number of heatstroke occurred during each class schedule

<table>
<thead>
<tr>
<th>class</th>
<th>schoolyard</th>
<th>gym</th>
<th>school house</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>m</td>
<td>f</td>
<td>t</td>
</tr>
<tr>
<td>A.C.A</td>
<td>1000</td>
<td>785</td>
<td>264</td>
</tr>
<tr>
<td>P.E.</td>
<td>109</td>
<td>59</td>
<td>50</td>
</tr>
<tr>
<td>field day</td>
<td>262</td>
<td>137</td>
<td>123</td>
</tr>
<tr>
<td>C.C.A</td>
<td>7</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>C.F.</td>
<td>9</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Fig. 5 Number of heatstroke as a function of the WBGT on schoolyard

Fig. 6 Number of heatstroke as a function of the WBGT in gymnasium

Fig.7 Number of heatstroke as a function of the WBGT in school house

図5に校庭における熱中症発生とWBGTの関係を場合別に示す。体育部活動に対する発生件数の少ない体育授業（P.E.）は件数の10倍、体育行事（field day）は件数の4倍で表示している。体育部活動中の熱中症はWBGTが31℃の際に最も発生のピークがあり、体育授業や体育行事中のピークもそれに近い。

図6に体育館における熱中症発生とWBGTの関係を、図7に校舎内における熱中症とWBGTの関係を場合別に示す。図6の体育館を見ると、体育活動中の発生ピークは図5と同じ31℃のWBGT階級にあるが、文化的活動および文化行事（C.C.A.）はWBGTが22℃の階級においても発生が多いことがわかる。図6および図7の横軸のWBGTは屋外のWBGTであり、体育館では換気が十分でない場合など、夏期の屋内のWBGTは屋外に比べて高くないと思われる。図6では体育行事の熱中症発生ピークがWBGT34℃の階級にあったことも特徴的である。図7の校舎内では、数は少ないが、文化的活動の熱中症発生ピークが31℃WBGTの階級にあることがわかる。スポーツ振興センターの事故データには文化的活動の場合の詳細が記録されていなかったため、これ以上の分析はできないが、音楽活動など窓を開けてよく換気が不十分になりがちなことが想定される文化的活動における夏期の運動会では、休業行為なくとも熱中症対策が必要ではないかと考えられる。

4. 考察

表5で、体育部活動中の熱中症、校庭、体育館、校舎のどこにおいても顕著に多いことがわかった。そこで、熱中症発生時の活動内容をスポーツ振興センターの事故データに基づき、校庭、体育館、校舎の場所別に、中学・高校の男女別に整理したものを表6に示す。

Table 6 Number of heatstroke occurred during each athletic club activity

<table>
<thead>
<tr>
<th>schoolyard</th>
<th>gym</th>
<th>school house</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (m)</td>
<td>S (f)</td>
<td>H (m)</td>
</tr>
<tr>
<td>baseball*</td>
<td>111</td>
<td>210</td>
</tr>
<tr>
<td>basketball</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>soccer</td>
<td>82</td>
<td>101</td>
</tr>
<tr>
<td>tennis*</td>
<td>33</td>
<td>71</td>
</tr>
<tr>
<td>track & field</td>
<td>28</td>
<td>36</td>
</tr>
<tr>
<td>volleyball</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>badminton</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>rugby</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Kendo</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>softball</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>handball</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>judo</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>table tennis</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

S (m): secondary school, male S (f): secondary school, female H (m): high school, male H (f): high school, female *including rubber ball style

表6を見ると、総数では野球、バスケットボール、サッカーの順で学校構内での熱中症発生が多くなっているが、校庭で多い部活動・体育館で多い部活動があることがわかる。また各部活動毎の参加生徒数の違いも考慮しなければいけないと考えられる。そこで全国高等学校体育連盟・全国高等学校体育連盟・日本高等学校体育連盟の部員数統計データ⑨および日本高等学校野球連盟の部員数統計データ⑩を用いて各部活動の熱中症発生率を以下の式に求めた。

\[R = \frac{H}{M} \times 10^{6} \] (3)

ここで、Ri：高校部活動iにおける熱中症発生率
Hi：高校部活動iの対象都市における熱中症発生数
Mi：高校部活動iの対象都市における対象期間平均部員数

中学については部活動毎の部員数の把握が難しいため、以降、部活動毎の熱中症発生率の分析では高校の部活動時の熱中症のみを対象とする。図8に
校庭における高校体育活動別熱中症発生率を、図9に体育館における高校体育活動別熱中症発生率を示す。スポーツ名の後に付けた（m）は男子を表し、（f）は女子を表している。また、野球およびテニスは硬式と軟式を併せたものである。熱中症発生数は上位ではなくなかったラグビー・バドミントンが発生率では高くないことが図8、図9からわかる。特にバドミントンの発生率は野球やラグビーの発生率よりも著しく高く、屋内スポーツであることからしても、建築環境的な配慮がより必要であると考えられる。

体育館での体育活動時間熱中症において女子の発生件数が男子よりも少ないことが表5に示されていたが、これはパドミントン（女子）の発生率の高さが影響していると考えられる。そこで、熱中症発生率の高かった体育活動の野球（男子）、ラグビー（男子）、パドミントン（男子と女子の合計）について、WBGTと熱中症発生数との関係を求め図10に示した。図10では中学校における活動のデータを用いており、熱中症データ発生数が野球に比べ少ないラグビーとパドミントンは値を5倍している。

![Fig. 8 Accident rate of heatstroke occurred during each athletic club activity on schoolyard](image)

![Fig. 9 Accident rate of heatstroke occurred during each athletic club activity in gymnasium](image)

<table>
<thead>
<tr>
<th>Table 7</th>
<th>Heatstroke rate occurred during each athletic club activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tokyo</td>
</tr>
<tr>
<td>schoolyard</td>
<td></td>
</tr>
<tr>
<td>soccer</td>
<td>68</td>
</tr>
<tr>
<td>softball</td>
<td>4</td>
</tr>
<tr>
<td>tennis*</td>
<td>48</td>
</tr>
<tr>
<td>basketball</td>
<td>6</td>
</tr>
<tr>
<td>badminton</td>
<td>2</td>
</tr>
<tr>
<td>volleyball</td>
<td>0</td>
</tr>
<tr>
<td>handball</td>
<td>4</td>
</tr>
<tr>
<td>rugby</td>
<td>6</td>
</tr>
<tr>
<td>baseball*</td>
<td>76</td>
</tr>
<tr>
<td>temp. & field</td>
<td>19</td>
</tr>
<tr>
<td>gym</td>
<td></td>
</tr>
<tr>
<td>basketball</td>
<td>31</td>
</tr>
<tr>
<td>badminton</td>
<td>10</td>
</tr>
<tr>
<td>volleyball</td>
<td>11</td>
</tr>
<tr>
<td>Kendo</td>
<td>4</td>
</tr>
<tr>
<td>judo</td>
<td>1</td>
</tr>
<tr>
<td>table tennis</td>
<td>2</td>
</tr>
</tbody>
</table>

*including rubber ball style

「3.1」節で述べたように熊本市の中高における熱中症発生率は高かった。そこで、九州地域の熊本市、福岡市、鹿児島市および兵庫県で熱中症発生率を東京の中高における体育活動中の熱中症発生数を、スポーツ種別に整理したものを表7に示す。表7の「no.」は2005～2014年の発生件数であり、「rate」は発生件数を対象都市の対象期間発生件数で除した発生率である。校庭（schoolyard）では、熊本市のサッカー、野球中の熱中症発生数が他都市に比べ著しく高いことがわかった。体育館（gym）では、熊本市のバスケットボール中の発生数が九州域ではやや高く、パドミントンおよび卓球中の発生数が他都市に比べ著しく高い。熊本市の中高における熱中症発生数が高い主要因として、サッカー、野球、パドミントン、卓球の部活
中の発生が挙げられる。一方、東京では九州地域に比べ、野球およびフィギュアスポーツにおけるほとんどの部活動で、九州地域の都市よりも熱中症発生率が著しく低かった。

熱中症対策の観点から、屋外スポーツ・体操活動の中止・休止を決定する参考として、当日の外気条件を報道やインターネット等で把握することは少なくないと考えられる。一方、本研究によって体育館および校舎内の熱中症発生のリスクが確認された。体育館内や教室内の熱環境条件をリアルタイムに教職員や生徒に提示し、当該箇所によっても、その環境情報を共有できるシステムの設置が有用と考えられる。特にリスクの高い活動や時間帯においては、その屋内熱環境情報システムを用いた教職員による活動中止/継続の意思判断と同時に、環境要因データから自動的に注意喚起を促す放送が流れるような手法を取ることも重要と思われる。

5. まとめ
日本スポーツ振興センターの2005～2014年の災害共済給付オンライン請求システムを用いて、対象都市（札幌市、仙台市、東京市、名古屋市、大阪市、広島市、福岡市、熊本市、鹿児島市）の熱中症データおよび気象情報の気象時刻別データを、熱中症発生時刻に基づいてマッチングさせ、中学高校における熱中症発生と環境温度との関係を考察した。その結果、以下の知見が得られた。

1) 校庭、体育館、校舎内において発生した熱中症発生数と屋外WBGTとの相関は、「原則として運動中止」の31℃発令までの範囲で示かれた。WBGT以外においても対象とする熱中症発生のリスクが増大する、校庭、体育館、校舎のどこにおいても顕著であった。
2) 体育部活動中の熱中症が、校庭、体育館、校舎のどこにおいても多かった。校庭での体育部活動中の熱中症は男子の三倍近く発生していたが、体育館では女子の熱中症発生数の方が男子よりも多かった。
3) 体育部活動の種目別に熱中症発生件数を求め、さらに各部活動参加者数で除し、熱中症発生率を求めたところ、体育館におけるパドミントンの発生率が高かった。また、体育部活動種目別熱中症発生件数とWBGTとの関係を求めたところ、体育館でのパドミントンは校庭でのラグビーや野球と同じ傾向で、WBGT上昇とともに発生件数が増加していた。

謝辞
学校管理下における児童生徒の事故データのご提供をいただき、日本スポーツ振興センターの関係各位に感謝を表します。なお、本文での解説は筆者のものであり、独立行政法人日本スポーツ振興センターの解説とは異なる関係はありません。当然ながら、分析・解釈上の誤りがあったとしても、その責任のすべては筆者にあります。

参考文献
DISCUSSION ON THE RISK OF HEATSTROKE DETERMINED WITH ACCIDENTS DATA OCCURRED DURING CLUB ACTIVITY IN SECONDARY/HIGH SCHOOLS

Study on the relationship between outdoor climate conditions and the accidents in schools (Part 4)

Go IWASHITA

* Prof., Dept. of Architecture, Tokyo City University, Dr.Eng.

The frequencies and characteristics of heatstroke occurred in secondary/high schools were investigated by using the data of NAASH (National Agency for the Advancement of Sports and Health), and analysis was done for a period of 10 years from 2005 to 2014. The investigated cities were Sapporo City, Sendai City, Tokyo City, Nagoya City, Osaka City, Hiroshima City, Fukuoka City, Kumamoto City and Kagoshima City in Japan. The environmental factors, e.g., outdoor temperature, relative humidity and global solar radiation, were obtained from the closest meteorological observatories from the respective cities at the time of occurrence.

During the 10-year period, out of 915,447 cases of accidents and injuries, 3,819 cases of heatstroke were reported in the data of NAASH for the investigated secondary/high schools of the cities. Of the 3,819 cases, 2,204 occurred at school grounds, e.g., schoolyard, gymnasium, pool and school building. Of the 2,204 cases occurred at school grounds, 1,430 occurred in the schoolyard, 557 in the gymnasium, 145 in the school building, and 26 were in the swimming pool. Out of 2,204 cases of heatstroke at school, 1,538 cases occurred during athletic club activities, 309 occurred on field day, 142 occurred during the physical education class.

The relationships between the environmental factors, i.e., outdoor temperature and WBGT (wet-bulb globe temperature) and the risk factor, i.e., the frequencies of heatstroke accidents and the odds ratio of heatstroke, were obtained. The risk factors of heatstroke for schoolyard, gymnasium, and school building, had a good correlation with WBGT, and this relationship would be used for the evidence when designing safe school environment. It showed that the odds ratio of heatstroke for schoolyard at 31°C of WBGT was 7.09 based on the standard WBGT of 22°C. On the other hand, the odds ratio for gymnasium at 31°C of WBGT turned out to be 4.92 and that for school building 3.67. The rather high risk level for gymnasium and school house could be interpreted to mean the importance of indoor climatic control for avoiding heatstroke in schools.

As it can be seen in the number of heatstroke occurred during each class schedule, the frequencies of heatstroke during the athletic club activities were appreciably high for schoolyard and in gymnasium. It was confirmed that the frequencies of heatstroke of male students occurred on schoolyard was almost three times higher than those of female students. On the other hand, the frequencies of female students in gymnasium were somewhat greater than those of male students. These finding may indicate that the athletic club activities which mostly female students participate have a significant influence on the frequencies of heatstroke occurred in gymnasium.

The accidents of heatstroke on schoolyard during athletic club activities, physical education, and field day occurred most frequently at the grade of 31°C WBGT. The frequencies of heatstroke occurred in gymnasium during athletic club activities passed its peak at the grade of 31°C WBGT as well. The quasi-peak of frequencies in gymnasium during cultural club activities and cultural festival is, however, distributed in a wide range of WBGT.

The results of the frequencies of heatstroke during each sports club activities showed that the number of heatstroke occurred on schoolyard during baseball, basketball, and soccer was quite frequent. If the number of accident during each club activity is divided by the population of the concerned club, the determined accident ratio in gymnasium during female badminton club was the considerably the highest. Although badminton is played in gymnasium, the risk level during badminton under hot and humid condition would be equal to that of baseball or rugby on schoolyard.

(2017年4月8日原稿受理，2017年10月10日採用決定)