極小曲面解析による膜構造の形状解析
複合変分汎関数を用いて
SHAPE FINDING ANALYSIS OF MEMBRANE STRUCTURE
Minimal surface analysis by using combined variational functional

石原 篤*, 八木孝憲**, 萩原伸幸***, 大森博司****
Kay ISHIHARA, Takanori YAGI, Nobuyuki HAGIWARA
and Hiroshi OHMORI

In the beginning of the design process of the membrane structures, it is recommended to adopt the minimal surface as the original design surface. In the numerical calculation for pursuing the objective minimal surface, we, however, can not always obtain the converged solution because of the strong nonlinearity involved in the problem. In the present paper, we propose "combined variational functional" which is composed by introducing the new functional concerned with elements' area into the original functional. Convergence characteristics of the stationary solution are discussed through some numerical examples.

Keywords : minimal surface, combined variational functional, shape finding analysis, membrane structures, variational problem, FEM

1 序

膜構造はその曲面がなす経路と優美さから、これまで、モニュメントの高い建築物として、博覧会、各種のイベントなどに数多く用いられてきたが、仮設構造物としての役割も大きかった。しかしながら、近年の膜材自体の耐久性、耐久性の向上により恒久構造物としての地位を築きつつある。

膜構造が他の建築構造と大きく違う点として、外反曲げモーメント、面外せん断力は一切抵抗せず面内張力によってのみ架橋を形成するという特徴がある。従って、膜構造の形状には自然の制約があり、設計者の意図する曲面が構造として必ずしも適切な曲面としてはある。膜構造が設計する際に、その原形曲面として最も望ましい形状は曲面の至るところで一様な張力となる曲面、すなわち等張力曲面である。膜面に一様な張力が保証されないと、わずかに、無理な張張状態が生じる。これは、美観上の問題さえあるなら、長期間の使用で膜材自体の耐久性劣化あるいは接着面の剥離といいった膜材の耐久性に関して密接に影響する。

一方、この等張力曲面向より与えられる曲面形状は、与えられた閉鎖面に張る曲面の中で最小の面積を持つ曲面である極小曲面とはよばれる曲面の形状と理論的・等価となることが知られている。自然界では、針金の枠に張る石炭膜が極小曲面となることが知られている。従って、極小曲面形状を見いだすことにより、設計時の原形曲面である等張力曲面の形状を求めることができる。本論では、このことを普遍的に用いて、極小曲面の形状解析により膜構造の形状決定問題を議論する。

極小曲面問題は、Plateau 問題とも呼ばれ古くから研究されているが、一般に曲面の表面積を汎関数とする変分問題として扱われるのが通例である。本論では、解を有利に進行するため内包体積を制御変数とする付帯条件をこれに導入し、三角形有限要素法により解析を行う。しかしなど、...

*名古屋大学大学院工学研究科 大学院生 工修
**名古屋大学大学院工学研究科 大学院生
***名古屋大学工学部建築学科 助手 工修
****名古屋大学工学部建築学科 助教授 工博
Graduate Student, Dept. of Architecture, Nagoya Univ., M. Eng.
Graduate Student, Dept. of Architecture, Nagoya Univ.
Research Assoc., Dept. of Architecture, Nagoya Univ., M. Eng.
Assoc. Prof., Dept. of Architecture, Nagoya Univ., Dr. Eng.
がら、通常は解析過程において各節点の自由度を操作するなど煩雑な操作を加えなければ収束解を得ることが難しい。このような問題に対して、Hinataら[1]、及び鈴木ら[2]は、方向余弦による自由度低減を行い、良い収束解を得ている。これに対して、筆者らは、方向余弦の設定に理論的な根拠がないことから、自由度低減は、収束性の向上という観点からは評価できるものの、方向余弦の設定によっては、工学的に意味を持たない曲面が求められたり、解析仮定の履歴により解形状が変化することなどを指摘している[3]。

上記のことから、各節点の自由度に任意的な拘束を加えず、x, y, z座標全てを未知数とする解析が必要であると考えられる。このことを実現するために、本論では、新たに要素面積に関する拘束を加えることを目的として、複合変分汎関数の概念を導入する。

本論の構成は、1. は序研究の背景及び既往の研究について述べ、2. は理論背景で極小曲面に関する理論と複合変分汎関数の概念、及び極小曲面問題への適用を述べる。

3. は定式化で三角形有限要素法を極小曲面問題に用い際の具体的な方法について述べている。4. は数値解析例であり、各種の境界モデルにより得られた数値解析結果を示す。5. は、で得ることができた形状をもとに応力解析を行い、等圧力状態の検証を行う。6. は結論であり、得られた結果に対するまとめを行っている。

2 理論背景

2.1 極小曲面の理論

極小曲面問題を変分問題として解くことから、曲面の表面積を最小化する。しかしながら、Pneumatic構造のように内部からの空気圧により架橋を形成する構造は、面積を最小化するだけでは求めることができない。また、解析においては、内包体積というパラメータ一つで形状を変化させることができることから、本論では、面積・内包体積に内包体積を指定する付帯条件を導入する。汎関数は式のようにになる。

\[
J(r, \lambda) = S + \lambda(V_0 - V) \tag{1}
\]

ここで、各パラメータは、S: 曲面の表面積、V: 内包体積、V_0: 指定される内包体積、\lambda: Lagrangeの未定係数である。従って、第二項が、内包体積を指定する付帯条件となる。このときの\lambdaは等圧力曲面との関係から平均曲率の2倍になることを証明できる（Appendix A 参照）。

本来の極小曲面は、内包体積指定の付帯条件が存在しない場合のものであり、式(1)の第一項のみにより得ることができる解曲面をいう。一方、内包体積を指定して得られる曲面は、平均曲率一定の曲面と呼ばれるべきものであり、正確には極小曲面ではない。本論では、この平均曲率一定の曲面も、内包体積の指定下の極小曲面として解釈し、以後、式(1)により得ることのできた曲面は全て極小曲面と呼ぶことにする。

2.2 各要素面積に関する拘束について

有限要素法解析における離散化された面積汎関数は次のようになる。

\[
J(r, \lambda) = \sum S_e + \lambda(V_0 - \sum V_e) \tag{2}
\]

新たに、パラメータは、S_e: 各要素毎の表面積、V_e: 各要素毎の内包体積である。式(2)を\lambda及び\lambdaに関して第一変分をとって停留条件式をつくりそれをもとに数値解析を行う。しかしながら、このままの形では離で述べた通り、直接解形状を得ることはできない場合があることがわかっている。ここで、極小曲面をFEMで離散化する時、節点の3つの空間座標を全て独立な未知数として解解析することが困難な理由として、以下の2つの考えられる。

まず第一点は、未知数の間に存在すると考えられる従属関係である。有限要素法を用いて解く時、各節点の未知数x, y, z座標全てを独立の未知数として扱うと、結果として係数マトリックスが特異になる場合が存在することが認められる。これは、未知数と未知数は従属関係が存在するために考えることの自然である。文献[2]において用いられた方向余弦を設定することは、未知数の間に存在する従属関係を予め設定することに対応する。

第二点は、多面体の表面積を最小にする規準が極小曲面を多面体で近似するための尺度を一意に与えているとは限りない事実である。言い換えれば、節点は、その曲面を表現できるならばどこにあっても、解は一意に決まらない場合があるということである（図1）。これは離散化誤差として解析中の計算に影響を与えるものと考えられ、近似解解析に安定した要因として考えられる。前述の方向余弦を与え自由度の低減を行うことは、この不安定性を強制的に排除することに対応している。

本論では、これまでに示した問題をもとに各節点に何らかの拘束を加えることが必要であると考えて、要素面積を互いに等しくする条件を汎関数に付加して解析を行うことにした。

図1: 同一曲面で節点の位置が異なる例
この場合、汎関数は以下のようになる。

\[J(r, \lambda) = \sum_e S_e + \lambda(V_0 - \sum_e V_e) \]
\[+ \alpha \sum_e (S_e - \frac{1}{m} \sum_e S_e)^2 \] 　(3)

式 (3) は、節点に関する拘束条件として、重み係数 \(\alpha \) を乗じ要素面積を等しくする汎関数として線形結合したものである。式 (3) は、元々の汎関数、式 (2) に面積を等しくする汎関数を結合し \(\alpha \) に任意の値を与えることにより、拘束を強化したり緩和したりして解を得ることを目指したものとなっている。具体的には、解析の当初は \(\alpha \) に適当な値を与え、収束解が得られたら、後に \(\alpha \) の値を小さくし解析を進め、最終的に \(\alpha = 0 \) にして、目的の解形状を得るという手順を行うことになる。このようにして得られる 2 つの汎関数の線形結合による汎関数を、ここでは複合変分汎関数と呼ぶことにする。

次に、一般の非線形問題を解く際の複合変分汎関数の概念について考えてみる。

2.3 複合変分汎関数の概念

本論の鈴田、非線形境界値問題を解析する際、問題に含まれる解析パラメータを逐次変更していくことにより逐次的に解を求めしていくことが通例である。このとき、問題によっては解の一象性が欠けて近傍解を求めようとしてもこれがうまく求まる場合が存在する。構造問題における幾何学的非線形問題で議論される変分問題はもうのないこと、飛行不安定点などにも規定する問題である。こうしたことからは、非線形問題に折返しの問題であり、「非」線形の問題であれば常にこうした問題が起こっても不思議ではなく、構造学上に現れる非線形問題のように実際の物理現象と対応させえて解を求めるような場合には現象面からその原因や方策を検討することが可能であり、また逆に現象の本質について考察することもできる。一方、非線形解の「有効な」解の全過程を明らかにする際に、その過程にある特異点を解消し、「無効な」解を排除して、単にその特異な過程を乗り越えて次段階の計算を行うことが必要の場合もある。

本論では、上記のような非線形問題の特異点を単に乗り越えることのみが必要な場合に、他の任意の付加的な条件を問題に課すことによってその目的を達成するための一方法を提案している。これは、問題の変分汎関数に他の拘束条件を線形結合し、新たな変分汎関数を自然的付加するもので、形式的には非線形計画法のペナルティ法と類似なものであるが、その考え方や収束方向に相違がある。本論において、「複合変分汎関数」を定義している汎関数がこの複数の汎関数を線形結合することによって得られる汎関数である。複合変分汎関数は以下のように考えることができる。「原」問題の汎関数が次式で与えられているものとする。

\[J(r, \lambda) = J_1(x) + \lambda C(x) \] 　(4)

ここに、\(J_1 \) は問題の支配方程式を記述する変分汎関数であり、\(C \) は付帯条件であり、\(\lambda \) は付帯条件を変分汎関数に取り込むための Lagrange の乗数である。周辺のようにこの表現によれば、\(J \) を変分パラメータ \(\lambda \) に関しても付帯条件を考慮した上での \(J_1 \) の停留解を得ることができる。式 (2) は、「原」問題の変分汎関数で、式 (4) に対応する。

ここで、上記の「原」問題の変分汎関数に対して、次のような新たな汎関数を考える。

\[J_2(x, \lambda) = J_1(x, \lambda) + \alpha J_3(x) \]
\[= J_1(x) + \lambda C(x) + \alpha J_3(x) \] 　(5)

ここで、\(J_3 \) は問題に応じて適宜決めることができる任意の変分汎関数であり、\(\alpha \) は実数の既知パラメータである。

次に、\(J_3 \) は以下のように定義される。

\[J_3(x, \lambda) = \sum_e S_e + \lambda(V_0 - \sum_e V_e) \]
\[+ \alpha \sum_e (S_e - \frac{1}{m} \sum_e S_e)^2 \] 　(6)

式 (6) は、節点に関する拘束条件として、重み係数 \(\alpha \) を乗じ要素面積を等しくする汎関数として線形結合したものです。式 (6) は、元々の汎関数、式 (5) に面積を等しくする汎関数を結合し \(\alpha \) に任意の値を与えることにより、拘束を強化したり緩和したりして解を得ることを目指したものとなっている。具体的には、解析の当初は \(\alpha \) に適当な値を与え、収束解が得られたら、後に \(\alpha \) の値を小さくし解析を進め、最終的に \(\alpha = 0 \) にして、目的の解形状を得るという手順を行うことになる。このようにして得られる 2 つの汎関数の線形結合による汎関数を、ここでは複合変分汎関数と呼ぶことにする。

次に、一般の非線形問題を解く際の複合変分汎関数の概念について考えてみる。

2.3 複合変分汎関数の概念

本論の鈴田、非線形境界値問題を解析する際、問題に含まれる解析パラメータを逐次変更していくことにより逐次的に解を求めしていくことが通例である。このとき、問題によっては解の一象性が欠けて近傍解を求めようとしてもこれがうまく求まる場合がある。構造問題における幾何学的非線形問題で議論される変分問題はもうのことで、飛行不安定点などにも規定する問題である。こうしたことからは、非線形問題に折返しの問題であり、「非」線形の問題であれば常にこうした問題が起こっても不思議ではなく、構造学上に現れる非線形問題のように実際の物理現象と対応させえて解を求めるような場合には現象面からその原因や方策を検討することが可能であり、また逆に現象の本質について考察することもできる。一方、非線形解の「有効な」解の全過程を明らかにする際に、その過程にある特異点を解消し、「無効な」解を排除して、単にその特異な過程を乗り越えて次段階の計算を行うことが必要の場合もある。

本論では、上記のような非線形問題の特異点を単に乗り越えることのみが必要な場合に、他の任意の付加的な条件を問題に課すことによってその目的を達成するための一方法を提案している。これらは、問題の変分汎関数に他の拘束条件を線形結合し、新たな変分汎関数を自然的付加するもので、形式的には非線形計画法のペナルティ法と類似なものであるが、その考え方や収束方向に相違がある。本論において、「複合変分汎関数」を定義している汎関数がこの複数の汎関数を線形結合することによって得られる汎関数である。複合変分汎関数は以下のように考えることができる。「原」問題の汎関数が次式で与えられているものとする。

\[J(r, \lambda) = J_1(x) + \lambda C(x) \] 　(4)

これに、\(J_1 \) は問題の支配方程式を記述する変分汎関数であり、\(C \) は付帯条件であり、\(\lambda \) は付帯条件を変分汎関数に取り込むための Lagrange の乗数である。周辺のようにこの表現によれば、\(J \) を変分パラメータ \(\lambda \) に関しても付帯条件を考慮した上での \(J_1 \) の停留解を得ることができる。式 (2) は、「原」問題の変分汎関数で、式 (4) に対応する。

ここで、上記の「原」問題の変分汎関数に対して、次のような新たな汎関数を考える。

\[J_2(x, \lambda) = J_1(x, \lambda) + \alpha J_3(x) \]
\[= J_1(x) + \lambda C(x) + \alpha J_3(x) \] 　(5)

ここで、\(J_3 \) は問題に応じて適宜決めることができる任意の変分汎関数であり、\(\alpha \) は実数の既知パラメータで、\(J_3 \) とはこれにより線形結合され、その結果として式 (5) で表現される新たな変分汎関数 \(J_2 \) を構成している。\(\alpha \) は既定として外部から与えるものであり、Lagrange の「未定」乗数とは異なっている。式 (5) の汎関数からに関して連続であって、もし有限の \(\alpha \) に対して式 (5) の停留解が得られれば、計算過程で \(\alpha \to 0 \) することによって「原」問題の停留解を得ることができると。式 (5) で表現される汎関数は、上記に提案したとおり複合変分汎関数と呼ばれるものであり、式 (3) は、まさにそれである。

ここで、式 (4) の汎関数の第一変分が問題に含まれるパラメータの特定の値に関して特異になる場をを考え、その際、その特異点の程度はここでは問題に含まれることはないということは前述の説明で明らかになる。このような場において、そのパラメータに関してその第一変分が正定であるような新たな汎関数 \(J_2 \) を「原」問題の汎関数である式 (4) に実数 \(\alpha \) を介して線形結合して式 (5) で表現される新たな汎関数 \(J_2 \) を構成すれば、結果としてこの汎関数 \(J_2 \) の第一変分は、着目しているパラメータの値に対して正則性を持つこととなり、通常の手続きで停留解を得ることができるようになる。このことは、実際問題としては、式 (4) の第一変分の非線形計算の過程において正則性が崩れた場合に、近傍の正解を初期解として構成される非線形計算過程において有限の \(\alpha \) を与えることによって、第一変分が特異におちいることを回避して収束解を達成し、もとの問題の制約パラメータを目的の値に設定し直した後に再び \(\alpha \to 0 \) とすることによると、自然に特異点を飛び越えた解に収束させることができることを意味している。

次にペナルティ関数などとの関連を考察してみる。制約のない最適化問題に対する方法を利用して、一般の制約付
き非線形最適化問題を解くという考え方がある。次のような等式制約条件を持つ非線形最適化問題を例題に考えてみる。

目的関数：
\[f(x) \rightarrow \text{最小} \]
制約条件：
\[G_i(x) = 0, \quad i = 1, 2, \ldots, m \]

上記の問題に対して、次式を定義する。

\[P_r(x) = f(x) + \frac{1}{2} \sum_{i=1}^{m} |G_i(x)|^2 \]

ここで、\(r > 0 \) はペナルティ・パラメータと呼ばれるもので、\(r \) が十分大きいとき、上記の制約付き非線形最適化問題の最適解は次式の制約なしの最適解によって近似することができることが知られている。

目的関数：
\[P_r(x) \rightarrow \text{最小} \]

式 (8) を目的関数として、制約なしの最適化問題として扱う方法がペナルティ法と呼ばれる方法であり、実際に計算過程において、制御変数 \(r \) を逐次的に増加させて計算することから、逐次制約なし最適化法とも呼ばれている手法である。

提案した複合変分汎関数とペナルティ法を比較すると、複合変分汎関数が係数マトリックスを特異にするような重み係数 \(\alpha \) を与える、順に値を小さくしていく最終的に \(\alpha = 0 \) あるいは、0 に非常に近い値として、目的の汎関数の最小化を行うのに対して、ペナルティ法では、ペナルティパラメータ \(r \) を順次大きな値としていくことで、最終的に制約条件を満たす解を得る。従って、両者の大きな違いは、解析中のパラメータの取り扱い方にある。

図 2, 3 に複合変分汎関数の一般的な状況での幾何学的な対応を示す。図 2 は、非線形解析を行う際の初期値がどの方程式の解から離れている場合、停留解が予めわかっていて汎関数をもとの汎関数に対して重み \(\alpha \) を大きくとることによって付加的に求解を得るのち、次で重み \(\alpha \) を減らしていくことにより「原」問題の停留解へ導いていく過程を説明している。また、図 3 は、「原」問題の停留解が何意に定まらない状況において、外部からの学的に停留解と存在するような正則性を付与している状況を示している。

2.4 まとめ

ここまでもで、極小曲面の解析における問題点の解法として、要素面積を等しくする条件と、その条件を汎関数に導入する手段として、複合変分汎関数とよぶ手法を提案した。次に、複合変分汎関数、式 (3) をもとに主問題としている極小曲面問題の定式化を行う。

図 2: 「原」問題が停留点を持っている場合

図 3: 「原」問題が停留点を持たない場合

3 定式化

図 4 のように、一般的の三次元曲面を三角形要素の集まりで表すものとして、要素の節点の空間座標を未知数として、定式化を進めめる。

三角形要素と、その記号を図 5 に示す。要素の三つの頂点を \(1, 2, 3 \) の順に、それぞれに位置ベクトルをそれぞれ \(r_1, r_2, r_3 \) とする。三角形要素 1-2-3 は、三角形要素 1-2-3 の \(xy \) 平面上への正射影を表す。 \(S_r \) は三角形要素の面積ベクトルである。まず、一つの三角形要素の面積 \(S_r \) 及びその要素の直下の \(xy \) 平面との間にできる柱状体の体積 \(V_r \) を三角形要素の各頂点の位置ベクトル \(r_i (i = 1, 2, 3) \) で表すことを考える。三角形要素の面積ベクトル \(S_r \) は次式のように表すことができる。

\[S_r = \frac{1}{2} (r_2 - r_1) \times (r_3 - r_1) \]
\[= \frac{1}{2} (r_2 \times r_3 + r_3 \times r_1 + r_1 \times r_2) \]

従って、

\[S_r = \sqrt{S_r \cdot S_r} \]

また、要素直下の柱状体の体積 \(V_r \) は、三角形 1-2-3 と要素の各頂点 1, 2, 3 のそれぞれを結んでできる 3 つの三角錐の体積の和で表される。

\[V_r = V_1 + V_2 + V_3 \]

ここに、V_iは$i - S_e$の三角錐部分の体積（$i=1,2,3$）である。これは次のように表すことができる。

$$V_i = S_e' \cdot \frac{(z_i - z'_i)}{3}$$ \hspace{1cm} (12)

なお、プライム記号 (') を付したものは、xy 平面へ斜影されたものを表す。ここに,

$$z_i - z'_i = (r_i - r'_i) = (r_i)；$$

ここで、三角形1'-2'-3'の面積 S_e'を、三角形要素の面積ベクトル S_e の z 方向成分として符号を含めた形で与えたが、これによって考えている曲面の座標に関して多価となる場合も、全要素について重ね合わせれば、内包体積として曲面内に挟まれた部分の体積が与えられることになり、閉曲面の内包体積が指定する問題が解けるようになる。（ただしこの場合、面積ベクトル S_e が常に曲面外の方向を持つことを必要とする。）

三角形1'-2'-3'の面積ベクトルをS_e'、三角形1'-2'-3'の重心から三角形1-2-3の重心への常にを示すベクトルを$Δg_e$とすれば、V_eは次のようにならわすことができる。

$$V_e = S_e' \cdot Δg_e$$ \hspace{1cm} (13)

ここで、

$$S_e' = \frac{1}{2}(r'_2 \times r'_3 + r'_3 \times r'_1 + r'_1 \times r'_2)$$

$$Δg_e = \frac{1}{3}\sum_{i=1}^{3}(r_i - r'_i)$$

一つの要素に関する面積 S_e と内包体積 V_e の第一変分を示すと次のようになる。

$$δS_e = \frac{S_e \cdot δS_e}{S_e}$$

$$= \frac{1}{2}(n \times (r_3 - r_2) \cdot δr_1 + n \times (r_1 - r_3) \cdot δr_2 + n \times (r_2 - r_1) \cdot δr_3)$$ \hspace{1cm} (14)

$$δV_e = Δg_e \cdot δS_e + S_e \cdot δ(Δg_e)$$

$$= \frac{1}{2}Δg_e \cdot (r'_3 - r'_2) \cdot δr_1 + \frac{1}{2}Δg_e \cdot (r'_1 - r'_3) \cdot δr_2$$

$$+ \frac{1}{2}Δg_e \cdot (r'_2 - r'_1) \cdot δr_3$$

$$+ \frac{1}{3}S_e'((δz_1 + δz_2 + δz_3)$$ \hspace{1cm} (15)

ここに、

$$n = \frac{S_e}{S_e'}$$

また、面積を等しくする条件式の変分は、次のようになる。

$$δ \sum s_e (S_e - \frac{1}{m} \sum S_e)^2$$

$$= 2 \sum s_e (S_e - \frac{1}{m} \sum S_e) δS_e$$ \hspace{1cm} (16)
4 複合変分汎関数による数値解析

本論で扱うモデルは円形境界、矩形境界、及びWiener境界の三種類である。円形境界とWiener境界の二つのモデルの解析中の特徴として、最終的にαの値を0ににして解を得ることができる。これに対して、矩形境界では、αを0にすることはできなかった。

1. 円形境界
モデルの対称性を考慮し四半円部のみで解析を行う。円形境界により求められる解曲面は球面となっている。図8は球面の半径と境界の半径が同一となる内包体積を指定し、要素数9, 16, 25, 36のモデルについて、図に示す太線部の節点座標と理論値との比較を行う。要素数が多くなるに従い節点座標が理論値に近くなることがわかる。

図9左は、文献[2]の方向余弦により自由度低減による解曲面である。右は、複合変分汎関数により得られた解曲面である。複合変分汎関数による解析は、自由度低減のように要素が境界部に偏ることなく収束解が得られていることがわかる。

2. 矩形境界
矩形境界モデルを図10に示す。このモデルでは、αを最終的に0とすることがでкатってなかった。これは、複合変分汎関数の幾何学的な概念で示した図3に対応する解である。

3. Wiener境界
Wiener境界は図11に示すとおり、二つの平行な円と直線で構成される境界形状である。Wiener境界の特徴は、2個の安定解と1つの不安定解の計3つの解（厳密な意味の極小曲面）を持つことが挙げられる。本解析でも、その3つ解が導出されている。

また、解形状の安定、不安定を第二変分の正負により示すことができる。図中の2nd vの値がそれぞれ、安定解では正の値を、不安定解では負の値をとることがわかる。なお、数値解析における第二変分の取り扱いは、Appendix Bに詳述した。

図13には解析過程で得られた体積と表面积、体積とLagrangeの未定乗数λとの関係をグラフに示す。λは平均曲率の2倍の値となり、それら2つのグラフから表面积が極値をとるとき、平均曲率が0となり、本来の極小曲面となることがわかる。

4. 任意の曲線境界
これまでに示した規則的な境界ではなく任意の曲線をもつ境界の解析を行った。境界形状は、図14に示す。これにより任意の境界をもつ解析が可能であることがわかる。
図 9: 円形境界: 解析結果の比較

図 10: 矩形境界: 解析結果

図 11: Wiener 境界: モデルの概略

図 12: Wiener 境界: 解析結果

図 13: Wiener 境界: 各パラメータの関係
5 応力解析

円形境界モデルにおける形状解析の結果に対して応力解析を行った。本解析の仮定を、張力と内圧によるボテンシャルエネルギーの関数を等価として、理論的には等張力曲面が形成されるはずである。離散化された解曲面において、境界条件等の各条件下で等張力状態が確保されるかどうかを判断すべく、形状解析に用いた要素分割を利用して有限要素法による応力解析を行う。要素離散化に至るまでには、応力曲面と境界形状解析によって構成される場合、面積重積の可能性も考えられる場合、ここでは求められた解形状を初期解とした一様変位解析に基づく形状解析を行うことになる。

6 結語

等張力曲面と極小曲面が論理的に等価となることから、線適性の設計の際の形状問題を見いだすために極小曲面の形状解析を行った。このとき、円形境界を対象とする付帯条件を導入した。また、収束列が容易に得られない場合には、節点に何らかの拘束を加える必要があるとの判断から、要素面積を等しくする拘束条件を付加するため複合変分法関数を導入し、さらに複合変分法関数の概念について言及し、主に非線形最適化問題におけるベナルティ法との対応に重点をおいて説明を行い、あわせてその幾何学的な解釈についても示した。

数値解析では、円形境界では一変数変化と自由度低減によるモデルを比較し要素分割に差異が生じることを確認した。また、Wiener境界では2つの安定解と1つの不安定解が、第二変分の正負で判断できることを示すとともに、内包体積、表面積、及び平均曲率の関係から、表面の極小曲面が得られる際に平均曲率が0となることを確認した。さらに、これとは別に、得られた解形状が等張力状態となることを確認するため、求められた解形状を用いての応力解析を行った。

以上、極小曲面のいくつかの例題を通じて、各節点の自由度操作をすることなく、全ての節点による変形を未知量にしながらも、重み係数のパラメータとして適当な値に解を得ることができるることを示し、複合変分法関数がこの種の問題に対して有用であることを示した。このような考え方は、今後、各種の非線形最適化問題の解析手法として適応範囲はかなり広いのではないかと考えられる。

Appendix

A 面積汎関数の力学的考察

内包体積を等価に対象とする下、極小曲面を求める面積汎関数は以下のように表される。

\[J(r, \lambda) = S(r) + \lambda (V_0 - V(r)) \] (21)

(21) 式で与えられた面積汎関数は幾何学的な諸量で表わされたものであるが、実際の力学現象と関連づけることができる。

シャボン玉のように内部の空気圧により膨らんだもののは、厳密には極小曲面ではなく、平均曲率一定の曲面と呼ばれる。しかし、膜内で一定の内圧が働くことをほぼ変化させ、極張力曲面である。この場合、閉曲面内部において空気の出入りはなく、曲面内の内包体積は変化しない。すなわち内包体積一定という条件付きの極小
曲面と考えることができる。このように、石鹸膜で形成される等張力曲面が極小曲面、あるいは平均曲率一定の曲面となることを含めて、(21)式の面積汎関数の力学的意味を考察する。

まず等張力曲面の全ポテンシャルエネルギーを考える。膜内には形状に関係なく常に一定の張力 \(T \) が、すべての方向に一様に働いている。膜の内部は、内部と外部の圧力差によって生ずる内圧 \(P \) が働いている。この膜張力 \(T \) を表面張力とすれば、ジャパン王の石鹸膜を想定していることになる。

膜張力による歪エネルギーと内圧の成す仕事は、それぞれ曲面の表面積、内包容積の増分量に比例する。\(S_0', V_0' \)をそれぞれ定めた基準状態における曲面の表面積及び内包容積とすれば、等張力曲面の全ポテンシャルエネルギーは、次のように表わすことができる。

\[
I'(r) = T \{ S(r) - S_0' \} + P \{ V_0' - V(r) \} \tag{22}
\]

(22)式は、\(T, P \) を既知とした上で \(r \) によって表わされているので、これがレトルト \(\Sigma' \) や、内圧 \(P \) と調和した状態等の等張力曲面であり、実際の等張力曲面の表面状態を表わす。\(I = I'/T \)
とおくと、(22)式は次式のように書き換えられる。

\[
I(r) = S(r) + P \frac{r}{T} (V_0' - V(r)) - S_0' \tag{23}
\]

(23)式は、(21)式と同一の形の汎関数となっている。従って、

\[
\lambda = \frac{P}{T} \tag{24}
\]

が成立することを示している。また、\(\lambda \) は次のようにして、平均曲率の 2 倍に対応することがわかる。図 16 に示すような力の釣り合い状態にあるとき、式 (24) が成り立つ。

\[
T_1 + T_2 = \frac{P}{r_1} + \frac{T_2}{r_2} = P \tag{25}
\]

そして、等張力の状態にあることから、\(T_1 = T_2 = T \) とおけば、

\[
\frac{1}{r_1} + \frac{1}{r_2} = \frac{P}{T} \tag{26}
\]

式 (24), (26) より、

\[
\lambda = \frac{1}{r_1} + \frac{1}{r_2} = 2H \quad (H: 平均曲率) \tag{27}
\]

従って、式 (27) より \(\lambda \) は、その曲面に関する平均曲率の 2 倍という幾何学的な意味を持つことがわかる。それゆえ、(21)式の停留解における Lagrange 乘数 \(\lambda \) は、内包体積指定の極小曲面の平均曲率の 2 倍の値となることが証明できた。

\[\begin{align*}
\Delta J &= (\delta C)^T [A] \delta C \\
\delta C &= \begin{pmatrix}
\delta C_1 \\
\delta C_2 \\
\vdots \\
\delta C_N
\end{pmatrix} \\
[A] &= \begin{pmatrix}
\frac{\partial^2 J}{\partial C_1^2} & \cdots & \frac{\partial^2 J}{\partial C_1 \partial C_N} \\
\frac{\partial^2 J}{\partial C_2 \partial C_1} & \ddots & \cdots \\
\vdots & \ddots & \ddots \\
\frac{\partial^2 J}{\partial C_N \partial C_1} & \cdots & \frac{\partial^2 J}{\partial C_N^2}
\end{pmatrix}
\end{align*}\]

従って、\(\delta^2 J > 0 \) であるためには次式が成立しなければならない。

\[\det[A] > 0 \tag{30}\]

\(A \) は、非線形連代方程式となる基礎式を解く際に用いられる修正方程式の係数行列に現われるものである。数値解析結果における第二変分の値は、この \(A \) の行列式の値を示している。
参考文献

[5] 石原俊、大森博司、八木孝憲：極小曲面の数値解析に基づくに関する研究、膜構造研究論文集’93、日本膜構造協会、pp.57-63, 1993 年

[6] 大森博司、萩原伸幸、松原徹哉、松原理：有限要素法による極小曲面の数値解析、膜構造研究論文集’88、日本膜構造協会、pp.1-10, 1988 年

[7] 大森博司、萩原伸幸、松原徹哉、松原理：張力構造に関する基礎的考察－極小曲面の数値解析－、第 2 回シエルと空問構造に関する日韓コロキウム論文集、pp.119-126, 1987 年

[8] 本間俊雄、鈴木俊男、荒井高志、中山昌尚、坂根伸夫：膜構造における極小曲面問題について、第 2 回シエルと空問構造に関する日韓コロキウム論文集、pp.111-118, 1987 年

[9] 膜構造建築物開発委員会編著：膜構造－その現状と展望－、日本膜構造協会、1986 年

[12] 佐藤幸平：面積最小の問題の石鹸膜実験、数学セミナー、日本評論社、第 12 巻、9、10、11、12 月、1981 年

[13] 石井一夫、安宅信行：建築膜構造の設計、工業調査会、1969 年

[14] 今野浩、山下浩：非線形計画法、日科技連、1987 年

[16] 上森学会：構造システムの最適化－理論と応用－、構造工学シリーズ 1、1988 年

[17] 加藤寛一郎：工学的最適制御－非線形へのアプロ－チ－、東京大学出版会、1988 年

[18] 伊川正夫、今野浩：数理計画法の応用＜理論編＞、産業図書、1982 年

[19] 鈴木誠道、高井英造：数理計画法の応用＜実際編＞、産業図書、1981 年

[20] 渡辺浩、青沼龍雄：数理計画法、筑摩書房、1977 年

(1994 年 5 月 10 日原稿受理、1994 年 12 月 22 日採用決定)