遠心成形コンクリート充填鋼管柱の軸圧縮性状

AXIAL COMPRESSION BEHAVIOR OF CENTRIFUGAL CONCRETE FILLED STEEL TUBULAR COLUMNS USING SUPER HIGH STRENGTH CONCRETE

宮木 智*, 松井 千秋**, 津田 恵吾***, 畑戸 龍夫****, 今村 輝武****
Satoshi MIYAKI, Chiaki MATSUI, Keigo TSUDA,
Tatsuo HATATO and Terutake IMAMURA

This paper reports axial compression test results of centrifugal concrete filled steel tubular short column using super high strength concrete. The concrete portion of section has a vacant hole, and the concrete is cast by centrifugal spinning method using super high strength concrete. If we are able to use centrifugal cast composite column, we are able to take good points that members weights light, need not require much time for mortar fill into a vacant hole and so on. But there are not many centrifugal cast composite column on researching papers. In this paper, axial compression tests on short column specimens were carried out in order that we may confirm relations between a vacant hole and structural performance. From the results of experiments, we confirm that experimental maximum strength is higher than superposed strength, even if a section has a vacant hole and we make understand the behavior of centrifugal cast composite column.

Keywords: centrifugal cast, vacant hole, high strength concrete, concrete filled steel tube, stub column test, superposed strength

1. はじめに

コンクリート充填鋼管柱 (Concrete Filled Steel Tube Column: CFT 柱) は耐力および変形能力などの構造性能に優れており、今後の高層建築の構築として一般に認識されている。しかし、優れた構造性能を期待するために、充填用コンクリートの調合設計や現場でのコンクリートの充填 (圧入方式、トレーシュ管方式) などの施工上の品質管理が重要であり、技術レベルの高い建設会社にしか施工は行えない。この施工上の問題を考えると、CFT 建造を一般化するためには工場製作による品質の安定した CFT 部材のプレキャスト化が望まれる。

また、材料の高強度化に伴い、CFT 柱のコンクリート強度を高くすることにより比較的小さな断面で同等の耐震性能を有する建物の設計が可能であることを筆者らが示したように、最近では高強度コンクリートを充填した CFT 柱の中心圧縮実験に関する研究もいくつか行われている。CFT 部材の遠心成形によるプレキャスト化は施工の省力化・自動化につながり、また密定で高強度のコンクリートが容易に打設できることから、最適な施工方法と考えられるが、遠心力で成形されるためコンクリート断面の中央に空洞ができる。製作工程を単純化するために断面内に空洞があるまま実用化する場合、この空洞は部材の軽量化につながり重荷に都合が良いが、構造性能にも影響するので空洞部の有無または大きさについて検討する必要がある。

そこで本研究では、空洞部の大きさを主要な実験変数とした短柱の中心圧縮実験を行い、軸圧縮力を受ける遠心成形コンクリート充填鋼管柱の最大耐力・弾塑性挙動・破壊状況などの基礎的性状の把握を行ったものである。

前田建設工業螺亀建築設計本部特殊構造部、九州大学大学院後期博士課程・工修
九州大学工学部 教授・工博
九州大学工学部 助手・工博
前田建設工業螺亀建築設計本部特殊構造部

Maeda Co. Graduate School of Eng., Kyushu Univ., M. Eng.
Prof., Faculty of Eng., Kyushu Univ., Dr. Eng.
Research Assistant, Faculty of Eng., Kyushu Univ., Dr.Eng.
Maeda Co.
なお、本論文の一部は日本建築学会大会学術講演概要集31-1091に発表済みである。

2. 実験概要
2.1 試験概要
图1に試験体の概要を表1に試験体の割り付けを示す。実験変数は、鋼管形状・加力方法・鋼管の径（幅）厚比・充填コンクリートの強度・空洞率・鋼管の焼結の有無とした。图2に空洞率の定義を示す。加力方法は、コンクリートと鋼管を同時に載荷する一体型加力（一体型試験体）と鋼管のコンクリートへの拘束をみるため、載荷板を介してコンクリートのみを載荷するアンボンド型加力（アンボンド型試験体）とした。試験体総数は52体である。また、鋼管と遠心成形コンクリートの機械的性質を把握するため、鋼管のみの中空鋼管供試体・試験体のコンクリート部分と同一サイズの試験体サイズコンクリート供試体。JIS A 1136による遠心力締め固めコンクリート供試体（JISサイズ）を用意した。

2.2 使用材料
表2に鋼管の引張試験片の引張試験と中空鋼管供試体の圧縮試験による機械的性質を示す。表3にコンクリートの調合を示す。試験体の割り付けを表4にコンクリート供試体の圧縮試験結果を、表5にスーダン供試体の圧縮試験結果を示す。なお試験体の材令は円形試験体で40から60日、角形試験体で60から100日程度とし、コンクリート供試体とスーダン供試体の材令は試験体と同一とした。

2.3 試験体製作方法
試験体の製作方法については、試験体の鋼管内にコンクリートを投入し、表6に示すように遠心力を急速・中速・急速の3段階に設定し、所定の回転数と成形時間でコンクリートを締め固めた。空洞率の管理はコンクリートの投入量によって行った。遠心成形後は図3に示す蒸気養生を施し、さらに気中に放置して自然養生をした。コンクリート供試体の遠心成形法・養生方法は、試験体と同一とした。

図-1 試験体概要
なお、コンクリート充填前に、一体型試験体では鋼管内の機械加工の油分を除去し、アンボンド型試験体では軸力が鋼管に流れないように鋼管内側にグリース材を薄く塗布したあと、厚さ 0.025mm のフィルム材を貼り付けた。空洞率 0% の試験体の製作については、空洞率 10% の程度の試験体を製作し、蒸気養生後の自然養生時に空洞部に無収縮モルタルを充填した。

2.4 加力および計測方法

加力方法および計測方法の概要を図-4 に示す。截荷は、500tonf 構造物試験機（九州大学工学部建築学科所有）を用い中心軸方向に単純截荷した。試験機の上部の加圧板は試験体の上端がピンとなるように回転拘束を解除した状態にした。

截荷速度は① 試験体の耐力変形性状に及ぼす截荷速度の影響を取り除く目的で、試験体およびコンクリート供試体とも、軸方向の平均ひずみ速度を約 0.002%/sec 以下とした。また加力は、軸方向ひずみが 7% を目標とした。

計測項目は截荷荷重・試験体の軸方向縮量・鋼管外側表面の軸方向と周方向のひずみ度とした。截荷荷重は試験機の計測部により測定し、試験体の軸方向縮量は、両端部にユニバーサルジョイントを取り付けた 4 頭の変位計により測定した。鋼管表面の軸方向と周方向のひずみ度は、鋼管に貼り付けた 12 頭の 2 軸ひずみゲージ（検長 30mm）により測定した。

3. 実験結果と考察

3.1 実験挙動

図-5,6 に円形試験体の、図-7,8 に角形試験体の圧縮力・軸方向ひずみ関係を示す。軸方向ひずみは 4 点の変位計により得られた軸方向変位の平均を材長で除した値である。図中には、鋼管降伏時を B 印で示してある。鋼管の降伏は Von Mises を仮定して [1] 式で示される相当応力が鋼管素材の降伏点（圧縮側降伏点）に達した時点とした。鋼管の軸方向応力と周方向応力は鋼管が平面応力状態であると仮定した場合の Hooke 則を用いて [2] 式より算定した。

\[
\sigma_{eq} = \sqrt{\sigma_z^2 + \sigma_{\theta}^2 - 2\sigma_z \sigma_{\theta} \cos \phi} \quad [1]
\]

\[
\sigma_z: 鋼管の軸方向応力,
\sigma_{\theta}: 鋼管の周方向応力
\]

\[
\sigma_{eq} = \frac{E}{(1-\nu^2)} \left(\varepsilon_z + \nu \cdot \varepsilon_{\theta} \right) \quad [2]
\]

\[
\varepsilon_z: 鋼管の軸方向ひずみ,
\varepsilon_{\theta}: 鋼管の周方向ひずみ,
E: ヤング係数 (206GPa), \nu: ポアソン比
\]

（1）一体型試験体

図-5(1),2 および図-7(1),2 より、Fc=98.1MPa の一体型試験体の截荷時までの挙動は、最大耐力後に急激な耐力の低下が生じた後、13 耐力がほぼ一定になる場合あるいは軸方向縮み 3% ～4% 程度から上昇する場合と、2 軸面に低下する場合との分類できる。円形試験体では、径厚比 30:45 ともに耐力が上昇する場合の限界の空洞率は 10% であり、空洞率が 30% を超えると径厚比の値に

--- 123 ---
<table>
<thead>
<tr>
<th>試験体名</th>
<th>加力方法</th>
<th>有価</th>
<th>有価</th>
<th>耐力</th>
<th>有価</th>
<th>有価</th>
<th>耐力</th>
</tr>
</thead>
<tbody>
<tr>
<td>B33H03</td>
<td>B型加力</td>
<td>80.6</td>
<td>78.0</td>
<td>87.0</td>
<td>64.0</td>
<td>67.0</td>
<td>86.0</td>
</tr>
<tr>
<td>B33H05</td>
<td>B型加力</td>
<td>80.6</td>
<td>78.0</td>
<td>87.0</td>
<td>64.0</td>
<td>67.0</td>
<td>86.0</td>
</tr>
<tr>
<td>BR17H05</td>
<td>B型加力</td>
<td>78.0</td>
<td>77.0</td>
<td>80.0</td>
<td>67.0</td>
<td>63.0</td>
<td>80.0</td>
</tr>
<tr>
<td>BR17H10</td>
<td>B型加力</td>
<td>78.0</td>
<td>77.0</td>
<td>80.0</td>
<td>67.0</td>
<td>63.0</td>
<td>80.0</td>
</tr>
<tr>
<td>BR17H20</td>
<td>B型加力</td>
<td>78.0</td>
<td>77.0</td>
<td>80.0</td>
<td>67.0</td>
<td>63.0</td>
<td>80.0</td>
</tr>
</tbody>
</table>

(2) アンボンド型試験体

アンボンド型加力を行ったFc=98.1MPaの円形試験体では、図6-1(2)より、最大耐力後に急激な耐力の低下が生じた後、その耐力が一定となったか、あるいは2軸方向縮み3%から4%程度から上昇する挙動を示した。角形試験体では、図8-1(2)より、幅厚比33%で円形試験体と同様な挙動を示したが、幅厚比17で空洞率5%、10%では、初期の耐力の低下はほとんど見られず、最大耐力に耐力を保っていた。Fc=58.8MPaの試験体では、図8-3(3)、図8-3(3)より、円形試験体、角形試験体ともFc=98.1MPaの場合で同等の挙動を示した。2軸方向縮みが3%から5%程度で耐力低下が上昇する場合はコンクリートの圧縮と鋼管の局部曲げに伴い、钢管とコンクリートの間に付着が生じ、軸力が钢管に流れたためである。
(3) 試験体の破壊状況

一体型試験体では、載荷に伴い鋼管の降伏は最大耐力前後で生じ、局部座屈は最大耐力後に観察されたことから、試験体はコンクリートの圧縮破壊が生じて最大耐力に至ったと考えられる。最大耐力時に載荷を中断・除荷し、試験体上部からコンクリート空洞部内の表面を内視鏡で観察したところ、一体型試験体では鉛直方向に数本のひび割れがそれぞれに発生し、アンボンド型試験体では試験体上下端面より柱幅程度入った位置に周方向のひび割れが発生していた。最終状況では、一体型試験体の場合鋼管に局部座屈が所々に発生し、また最大耐力時に観察されたひび割れ位置の近傍で鋼管の局部座屈の位置のコンクリートが空洞部内に剥落していた。アンボンド型試験体の場合、載荷に伴いコンクリートの圧縮と膨張により鋼管が面外に膨らみ、最終状況では端部から柱幅付近の領域の部分が一緒に膨らんでいった。

円形試験体 BC45H00, BC45H30, UC45H05, UC45H20 および角形試験体 BR33H00, BR33H20, UR33H05, UR33H20 について、実験終了後に鋼管を切りとり内部のコンクリートの破壊状況を観察した結果を写真-1, 2 に示す。これら全ての試験体では、鋼管の座屈位置に対応するようにコンクリートの破壊が見られ、コンクリートが周方向に膨らむ状況が見られた。

3.2 初期剛性

図-9に一体型試験体の実験結果の荷重と軸方向ひずみにより求めた初期軸方向性 Kexp と、[3] 式により計算した剛性 Kcal との関係を空洞率ごとに示す。なお、Kcal の計算に用いるコンクリートの弾性係数は、試験体サイズコンクリート供試体により算定したコンクリートの弾性係数が ACI363 式（1）の計算値とほぼ一致していたことから、ACI363 式を用いた。

$$K_{cal} = \frac{sE \cdot A + \epsilon E \cdot c A}{L}$$ \[3\]

sE: 鋼管の弾性係数 (206 GPa)
sA: 鋼管の断面積 (mm2)
ϵE: ACI363 によるコンクリートの弾性係数 (GPa)
ϵB: 試験体サイズコンクリート供試体より求めたコンクリート圧縮強度 (MPa)
γ: コンクリートの単位体積重量 (2500 kg/m3)
cA: コンクリートの断面積 (mm2), L: 材長 (mm)

図より Kexp/Kcal の値は、円形試験体の場合で 0.96～1.02、角形試験体では 0.91～1.19 となり、空洞率の大きさに関わらず、剛性は鋼管とコンクリートとの剛性的和による計算値により評価できることが判る。
3.3 最大耐力

表-6に実験結果の最大耐力 Pexp と計算値 Pcal の比較を示す。一体型試験体の計算値は、[4]式に示すように鋼管とコンクリートの架加強度とし、アンボンド型試験体の耐力の計算値はコンクリートの耐力をとした。図-10と図-11に耐力の計算値と実験値の比 Pexp/Pcal を空洞率ごとに示す。

一体型 \[P_{cal} = s \sigma_y \cdot s A + m \sigma_B \cdot m A \]
アンボンド型 \[P_{cal} = c \sigma_B \cdot c A \]

\(s \sigma_y \): 中空鋼管の圧縮強度 (MPa)
\(s A \): 鋼管の断面積 (mm²)
\(c \sigma_B \): 試験体サイズコンクリート供試体より求めたコンクリート圧縮強度 (MPa)
\(c A \): コンクリートの断面積 (mm²)
\(m \sigma_B \): モルタルの圧縮強度 (MPa)
\(m A \): モルタルの断面積 (mm²)

(1) 円形試験体

円形試験体について、一体型試験体の架加強度の計算値に対する実験値の比 Pexp/Pcal は、1.13 ～ 1.23 の範囲にある。特に空洞率の大きな 50% でも Pexp/Pcal は 1.14,1.16 となり、実験値は架加強度の計算値を十分に上回っている。図-10(1)より、実験変数の Pexp/Pcal に対する影響をみると、一体型試験体の Fc=98.1MPa では、空洞率が 10% 程度以下であれば径厚比の小さい方が Pexp/Pcal の値は多少大きい傾向にあるが、空洞率 20% 以上では径厚比、空洞率の Pexp/Pcal に対する影響は見られない。また空洞率 10% ～ 20% の範囲であるが、コンクリート強度が低い場合、Pexp/Pcal の値は比較的大きい値を示した。

アンボンド型試験体では、Pexp/Pcal の値は 1.68 ～ 2.62 の範囲となり、鋼管の拘束によりコンクリートの耐力が上昇したと考えられる。また Pexp/Pcal は一体型試験体と比較して、径厚比・空洞率・コンクリート強度の影響を大きく受け、空洞率・径厚比が大きくなるほど、またはコンクリート強度が大きくなるほど Pexp/Pcal の値は小さくなる。また径厚比・空洞率が大きく、コンクリート強度が高いもの（径厚比 45、空洞率 20%, Fc=98.1MPa）でも Pexp/Pcal の値は 1.68 と実験値は計算値を大幅に上回り、鋼管の拘束によるコンクリートの耐力上昇が期待できる。

(2) 角形試験体

角形試験体の場合、一体型試験体で Pexp/Pcal の値は 1.03 ～ 1.17 となっており実験値は架加強度とほぼ対応していることが分る。実験変数の違いによる Pexp/Pcal の傾向をみると、Fc=98.1MPa では円形試験体とは傾向が異なり、Pexp/Pcal の値は空洞率にはあまり関係しないためコンクリート強度の影響を受け、コンクリート強度が低い場合、Pexp/Pcal の値は比較的大きい値を示した。

図-10 耐力と空洞率との関係（円形試験体）

図-11 耐力と空洞率との関係（角形試験体）
アンボンド型試験体では幅厚比の試験体を除いて、Pexp/Pcal の値は 1.47 ～ 2.04 の範囲にあり、幅厚比とコンクリート強度の影響を大きく受け、空間率、幅厚比が大きくなるに従い、またはコンクリート強度が高くなるに従い、Pexp/Pcal の値は小さくなる傾向がある。幅厚比の試験体では Pexp/Pcal の値は 1.0 程度であるが、幅厚比の Pexp/Pcal は 1.5 程度であり、鋼管の拘束によるコンクリートの耐力上昇が期待できると考えられる。最大耐力では鋼管の焼純の有無による違いはあまり見られなかった。

3.4 最大耐力時のひずみ
鋼管の拘束効果による最大耐力時のひずみの上昇をみるため、最大耐力時のひずみ cε（変位計による軸縮み/材長）を試験体サイズコンクリート供試体の最大強度時にのひずみ cε'で除した値 cε/cε'を表-6に示す。また図-12、図-13に cε/cε'を空間率ごとに示す。

(1) 円形試験体
円形試験体について、一体型試験体、Fc=98.1MPa では、cε/cε'は、空洞率0%で2.6程度となり、空洞率が大きくなるにつれて最大耐力時のひずみは小さくなる傾向にあるが、空洞率が20%より大きくなるほど同じ値の2.9程度で最大耐力に達している。径厚比の違いによる cε/cε'は、空洞率が20%より小さいたければ径厚比の小さい方が大きなひずみで耐力に達しているが、空洞率が20%以上になると径厚比の影響は見られない。Fc=58.8MPaの場合はFc=98.1MPaに比べて大きいひずみで最大耐力に達していた。
アンボンド型試験体では、cε/cε'は2.7 ～ 6.3 となり、一体型試験体と比べて大きい値を示している。また実験変数の違いによる cε/cε'の傾向は同様であるが、その与える影響は大きいことが判る。

(2) 角形試験体
角形試験体の場合、一体型加力、Fc=98.1MPaでは、最大耐力時のひずみは空洞率により大きな違いは見られないので、幅厚比とコンクリート強度の影響を受け、幅厚比が大きくなるに従いコンクリート強度が高くなるに従い、最大耐力時のひずみは大きくなっていることが判る。Fc=58.8MPaで空洞率20%の最大耐力時のひずみは、10%に比べて大きくなっているが、図-7(3)に示す圧縮力、軸ひずみ関係をみると空洞率20%の試験体では最大耐力付近で耐力が横ばいとなっており、数値上1%を越えた値となったと考えられる。
アンボンド型試験体では、幅厚比とコンクリート強度の違いによるほかに、空洞率の影響も受け、幅厚比、空洞率が大きくなるに従い、またはコンクリート強度が高くなるに従い最大耐力時のひずみは小さくなっていること。
3.5 最大耐力以降の性状
最大耐力以降の挙動は最大耐力で試験体によって異な
るので単純に比較できない。そこで圧縮力を実験最大耐
力で無次元化した無次元化耐力と軸方向縮みとの関係を
図-14, 図-15に示す。また, 荷重低下率（軸ひずみ3%ま
での最大荷重で除した値）と空洞率との関
係を図-16, 図-17に示す。

円形試験体の場合, 荷重低下率と空洞率との関係をみ
ると, 空洞率が大きくなるに従い荷重低下率は大きくな
ることが判る。また軸ひずみが3%程度まで, 空洞率
0%の柱の性能とほど違いない空洞率の試験体を考え
ると, 図-14により空洞率が5%～30%の試験体は空洞
率0%の試験体と同等な弾塑性挙動を示している。

角形試験体の場合は, 幅厚比が17の場合では鋼管
の降伏点が高いため, 空洞率が大きくなると中空鋼管の
挙動に近づき, 荷重低下率の空洞率による違いは見られ
ない。幅厚比33の場合では, 空洞率が大きくなると徐
々に荷重低下率は大きくなるが, 軸ひずみ3%までの性
状としては空洞率0%～10%は同等な挙動を示してい
ることが判る。

4. まとめ
内部に空洞を持つ遠心成形コンクリート充填鋼管短柱
の中心圧縮実験を52体の試験体を用いて行い, 実験結
果の軸圧縮耐力と縮みとの関係により以下の結論を得た。
①一体型加力を行った試験体の場合, 実験結果の最大耐
力は空洞率の値によらず, 空洞率50%の大きなもので
ても鋼管とコンクリートの累積強度を上回った。
(円形試験体の場合 Pexp/Pcal=1.13 ～ 1.23,
角形試験体の場合 Pexp/Pcal=1.03 ～ 1.17)
②アンボンド型加力を行った試験体の場合, 角形試験体
で幅厚比33の試験体を除いて実験値は計算値を大幅
に上回り (円形試験体の場合 Pexp/Pcal=1.68 ～ 2.62,
角形試験体で幅厚比17の場合 Pexp/Pcal=1.47 ～ 2.04).
空洞率20%の大きなものでも鋼管の拘束によりコン
クリートの耐力が上昇していた。
③一体型試験体の初期剛性は, 鋼管とコンクリートの剛
性の和による計算値より評価できた。
(円形試験体の場合 Kexp/Kcal=0.94 ～ 1.02,
角形試験体の場合 Kexp/Kcal=0.91 ～ 1.19)
④ 一体型試験体の最大耐力時のひずみは、円形試験体の場合、空洞率が0%〜30%までは空洞率が大きくなるに従い小さくなり、空洞率が30%〜50%ではほぼ等しいひずみで最大耐力となった。またコンクリート強度が大きくなるに従い最大耐力時のひずみは小さくなる。角形試験体の場合、幅厚比とコンクリート強度の影響を受けるが、空洞率による違いはあまり見られないと。

⑤ 一体型試験体では、無次元化耐力と軸方向ひずみとの関係において、ひずみを3%と設定した場合、円形試験体ではそれを空洞率0〜30%の試験体は同等な弾塑性挙動を示していた。角形試験体の場合では鋼管の降伏点が高く幅厚比が17の場合は、空洞率の違いによる性能の違いは見られないが、幅厚比33の場合では空洞率0〜10%程度までで空洞率0%と同等な挙動を示していた。

謝辞
試験体製作にあたり、三谷セキサン（株）技術部 荒木隆氏・渡辺正登氏・大庭弘成氏のご協力を得ました。また実験実施にあたり九州大学教官 有働文久氏・川口晃氏・久島昭久氏にお世話になりました。ここに記して深く感謝いたします。

参考文献
1) 今村輝武・小戸長夫・多賀章・吉野茂・宮本聡：鋼管コンクリート構造の開発 (その1) 超高層建物の試設計、日本建築学会大会学術講演集概要、pp.1815-1816, 1992.8.
2) 岡本達雄・前野敏元・久徳敏治・西澤英和・高多潔：超高強度コンクリートを内部充填した遠心成形角形鋼管コンクリート柱の実験的研究、日本建築学会大会学術講演集概要、pp.1359-1360, S63.10.
3) 岡本達雄・前野敏元・久徳敏治・高多潔・西澤英和：超高強度遠心成形角形鋼管コンクリート柱（RUC柱）に関する実験的研究（鋼管幅厚比、軸圧縮応力、付着強度に関する検討）、日本建築学会大会学術講演集概要、pp.1611-1612, 1989.10.
4) 前野敏元・岡本達雄・久徳敏治・西澤英和・金多潔：超高強度遠心成形角形鋼管コンクリート柱に関する実験的研究 (鋼材種、工厚比、軸力比に関する検討と考察)、日本建築学会大会学術講演集概要、pp.1039-1040, 1990.10.
5) 前野敏元・岡本達雄・久徳敏治・西澤英和・金多潔：超高強度遠心成形角形鋼管コンクリート柱に関する実験的研究 (M/QB=5.79の軸力曲げせん断実験)、日本建築学会大会学術講演集概要、pp.1563-1564, 1991.10.
6) 前野敏元・岡本達雄・久徳敏治・西澤英和・金多潔：超高強度遠心成形角形鋼管コンクリート柱に関する実験的研究 (断面中央に中空部を有する柱の軸力曲げせん断実験)、日本建築学会大会学術講演集概要、pp.1841-1842, 1992.8.
7) 平井義行・井上寿也・益尾孫・岡本達雄・前野敏元・久徳敏治・宇田健二・西澤英和・金多潔：高強度コンクリート充填鋼管短柱 (RUC柱) の中心圧縮実験、GBRC, NO.69, pp.40-51, 1993.1.
8) 宮本聡・松井秋夫・津田恵吾・小戸長夫・今村輝武・多賀章・吉野茂：遠心成形コンクリート充填の角形鋼管短柱の軸圧縮性状 (その1) 実験概要、日本建築学会大会学術講演集概要、pp.1569-1570, 1994.9.
9) 津田恵吾・松井秋夫・小戸長夫・今村輝武・多賀章・吉野茂・宮本聡：遠心成形コンクリート充填の角形鋼管短柱の軸圧縮性状 (その2) 実験結果と考察、日本建築学会大会学術講演集概要、pp.1571-1572, 1994.9.