アクティブマスダンパーを用いた建物の振動制御
その2 装置能力の制約を考慮した可変ゲイン制御手法とその制御性能に関する研究

RESPONSE CONTROL OF BUILDINGS WITH ACTIVE MASS DAMPER
Part 2: Study on design method of variable gain feedback controller considering constraint on AMD system and its performance

長島一郎*, 西山正三**, 篠崎祐三***
Ichiro NAGASHIMA, Shozo NISHIYAMA and Yuzo SHINOZAKI

A design method of variable gain feedback controller for a building AMD system is proposed. A constraint on AMD system such as control force or stroke of a mass damper can be considered individually in this design method. The method consists of two design stages. In the first stage one parameter \( \alpha \) is defined which corresponds to the performance of AMD system with respect to the constraint and the variable feedback gain is evaluated as a function of parameter \( \alpha \). In the second stage the parameter \( \alpha \) is changed continuously by on-line computation so as to keep the response of the AMD system within the constraint.

It is shown through numerical examples that this method effectively adjusts the response of AMD system such as control force or stroke of a mass damper against the variety of intensity levels of external excitation. The performance and the application range of the AMD system is thereby improved remarkably compared to those achieved by ordinary constant gain feedback control.

**Keywords**: active mass damper, constraint, variable gain, output feedback, optimal control

1. 序

建築構造物を対象としてアクティブ制御を適用する場合、特に重要であることにとして以下に示す2点が挙げられる。一つは、発生自由度振動系の挙動を示す建物構造物の、各振動モードの振動を、出来るだけ少ない箇所の観測応答を用いて発達実験することであり、もう一つは、地震、風等の強制、発生に伴う振動に対応して、装置能力の制約下で制振効果を最大限に発揮させることがある。前節の課題に対して、筆者らは既に複数モード制御の手法を提案し、その有効性を数値解析及び実験により実証した。本論では、後者の課題に対して、制御系やアクティブマスダンバー（以下AMDと略）のストローク等の装置能力の制約を考慮した実用的可変ゲイン制御の設計手法を提案する。

アクティブ制御を用いて用いられている最適制御理論では、観測応答に数値制御ゲインをかけて制御力を求める、線形制御則が得られる。線形制御則を用いる場合、制御力やAMDストローク等の装置能力は、外乱の強度レベルに比例して増大するため、ある強度レベルの外乱に対し
の適用研究も試みられている。これらの制御は、ある切り換え面（Switching Surface）を境に、制御力の振幅を制約内で最大にして符号を切り換える、いわゆるBang-Bang制御が知られている。しかしその切り換え面の開解系が未定、次数の低いシステムに対してしか得ることがで、4次以上のシステムに対しては、あらかじめ数値計算により切り換え面を求めておく必要がある。また、からかわれた制御則は離散制御となり安定性の検証が容易ではない、切り換え面で制御力に高速の切り換え（チャタリング）をする場合がある等の問題がある。特に、制御性を重視する制御系に対しては、実用上の上でに解決すべき課題が残されている。

制御力の制約を直接拘束条件として考慮する簡便な方法として、設定したリアプノフ関数の時間減少率を時々刻々最大化する方法がKalanらにより示されており、筆者らもこの方法を線形制御と組み合わせ制御手法を開発して制御性能を検討した。この場合もBang-Bang制御となるが、切り換え面は状態変の線形結合で表示される超平面として容易に得られる。制御の安定性は保証され、リアプノフ関数の時間減少率のみに注目しているため、それほど大きな制振効果が得られない。また、スライディングモードを用いるため（4）制御力にチャタリングを生じる問題があり、出力フィードバック制御では高次モードに対するスピーカー不安定に注意の必要がある。3

可変ゲイン制御、予め制御の外乱レベルを想定して複数の定数制御ゲインを求めておき、何らかの応答値を評価値として制御則を時々刻々切り換える方法で、制御力の他のA,B,ストロークの制約等を考慮するため、AMD制御を用いた建築物の振動制御にいくつかの適用研究がある。しかししながら、評価値の設定には直感的感覚や変位応答等の指標及び線形性の設定、並びに観測位置の選定が必要で、これらは試行錯誤を必要とし、合理的な評価値の設定には困難が伴う。また、評価値の近傍で状態が推移するとチャタリングを生じる可能性がある。評価値の設定が適当でないと、制御則を切り換え間際に制御力に不連続を生じ、スパイクノイズ等を生じる可能性があるため、実用的時には切り換えを徐々に行うための工夫が別途必要であった。時々刻々に細かい制御を行うためには、評価値もそれに応じてきめ細かく設定すれば良いが、制御計算時間と関係で制約がある。4

本論では、制御力やAMDストローク等を用いる、单一の制御性能を制約として考慮し、異なった制御性能のレベルに対応した複数の定数制御ゲインを1パラメータで制御可能の離散関数として近似し、時々刻々を連続的に更新して、制御性能を制約内で保ちながら制御性能向上させる可変ゲイン制御手法を提案する。本手法は、出力フィードバックによる複数モード制御手法10と容易に組み合わせることが可能で、モデル数次の制約を受けず、予め安定性を確認した制御ゲインを用いるため高次モードに対するスピーカー不安定を抑制できる。また、制御を不連続に切り換えずに滑らかに切り換えるため、チャタリングを生じにくいメリットがある。

100％の建築構造物の振動モードをAMD制御する場を想定し、制御力はストロークを制約として考慮するそれぞれの場合について、本手法の適用方法を示し、数値解析により有効性を実証した。制御性能の検証では、低速複数モードを制御対象とした、設定の等体系的な制御力の変化に追従して可変ゲイン制御が有効に作用することを確認するために、時系列の強度レベルの変化が大きい外乱の代表例としてEl-Centro1940NS地震波を用いた場合の時刻応答解析結果を示した。最大入力加速度レベルの変化に対応した応答低次効果及び装置応答の関係を調べ、定数制御ゲインを用いた線形制御と制御性能を比較検討し、提案手法の有効性を検証した。

2. 可変ゲイン制御設計手法

2.1 定式の定義化

m個のアクティブマスランバーが設置されたn自由度振動系の建築構造物の状態方程式は（1）式で表される。

\[ \dot{x} = A x + B u + e f \]  

ここで、Aは2×（n+m）行2×（n+m）列のシステム行列、Bは2×（n+m）行m列の制御力の作用位置を規定する行列、Eは2×（n+m）列の外乱の作用位置を規定する行列、Xは2×（n+m）次の方程式ベクトルである。

本論では、1式の状態方程式に対して、2式の時間積分で表される2次形評価関数を設定し、最適制御理論を適用して（3）式の制御力を求める。

\[ J = \int_0^T (x^T Q(x) x + u^T R(x) u) dt \]  

\[ U = -G_{opt}(x) x \]  

ここで、Q（x）は準正定値、R（x）は制御力による正定値で対称な重み係数マトリックスであり、制御力のレベルを規定する1パラメータの関数として与えるものとする。G_{opt}（x）はm行n列の最適フィードバックゲイン行列であり、\( \alpha \)の関数として求められる。

出力フィードバック制御の場合は、\( \alpha \)の各値に対して前報1で示した方法を適用し、1式の状態方程式と2式の評価関数に座標変換を施して、制御対象の低次複数モードに対する状態方程式と評価関数を作成し、出力フィードバックゲインを求めれば良い。この場合制御力は（4）式（前報1の（18）式に相当）で与えられる。

\[ U = -G(x) Y \]  

これを、G（x）はm行n列の出力フィードバックゲイン行列で、Yは1行の観測状態量のベクトルである。

本制御手法は図1に示す通り、可変ゲイン行列G（x）を1パラメータ\( \alpha \)に関する多項式近似により構成する offlineの設計ステップと、制制力やAMDストローク等の装置応答Pが（5）式の制約を満たすように、時々刻々\( \alpha \)
図1 可変ゲイン制御の流れ

を更新し制御性能を向上させるon-lineの制御実行ステップから成る。

式で与えるものとする。

ここで、\( a, b \)は定数である。

設定する制御強さの範囲で、最も弱い制御と最も強い制御に対する\( r(\alpha) \)の値を\( r_H \)と\( r_L \)とし、各々に対する\( \alpha \)の値を（7）式のように\( \alpha_{min} \)と\( \alpha_{max} \)と指定すると、\( a \)及び\( b \)の値が（8）式の通り求まり\( r(\alpha) \)の形式が決定する。

\[
\begin{align*}
\alpha_{min} &= r_H, \quad r(\alpha) = r_L \\
\alpha_{max} &= r_H, \quad r(\alpha) = r_L \\
a &= r_H, \quad b = \frac{\alpha_{min} - \alpha_{max}}{ln r_H} \\
b &= r_L, \quad b = \frac{\alpha_{min} - \alpha_{max}}{ln r_L}
\end{align*}
\]

以上のようになり\( r(\alpha) \)の形式を定めると、後述する数値解析結果からわかる通り\( \alpha \)の値を\( \alpha_{min} \)から\( \alpha_{max} \)の範囲で線形的に増減することで、制御強さを設定した範囲内で滑らかに増減させることができる。

\( X = \begin{bmatrix} x_1, \ldots, x_n, x_1, \ldots, x_n, x_1, x_2 \end{bmatrix} \quad \cdots \quad (9) \]

\[
Q(\alpha) = \begin{bmatrix} q_1(\alpha), Q_{2n \times 2n} & 0_{2n \times 2n} \\
0_{2n \times 2n} & q_2(\alpha), Q_{2n \times 2n} \end{bmatrix}
\]

ここで、\( x_1, x_2 \)：AMDのストローク、ストローク速度
\( x_1, x_2 \): 自由度制御対象物の変位、速度
\( Q_{2n \times 2n} : 制御対象物の速度・変位に与える2n行2n列の重み係数マトリックス

\[
Q_{2n \times 2n} : AMDのストローク、ストローク速度に与える2行2列の重み係数マトリックス
\]

\[
q_i(\alpha) : 制御対象物の速度・変位に与える重み係数の比率を示すスカラ関数
\]

\[
q_i(\alpha) : AMDのストローク、ストローク速度に与える重み係数の比率を示すスカラ関数
\]

\[
0_{2n \times 2n}, 0_{2n \times 2n} \)：零行列で添字はサイズを表す

制御対象物の応答抑制に主眼を置いた通常の制御からストロークの抑制に主眼を置いた制御へ、滑らかに制御を変化させるためには、\( r(\alpha) \)の場合と同様に\( q_i(\alpha) \)と\( q_i(\alpha) \)の値を指数関数的に増減する必要があるため、これらの関数の形式を（11）式で与えるものとする。

\[
q_i(\alpha) = c_i \exp \left( \frac{\alpha}{d_i} \right), \quad q_i(\alpha) = c_i \exp \left( \frac{\alpha}{d_i} \right)
\]

ここで、\( c_i, d_i \)は定数である。

（12）、（13）式に示す通り、設定する制御強さの範囲で、構造物の応答抑制に主眼を置いた制御に対する\( q_i(\alpha) \)と\( q_i(\alpha) \)の値をそれぞれ\( q_{iH} \)と\( q_{iL} \)として対応する\( \alpha \)の値を\( \alpha_{max} \)と指定し、ストロークの抑制に主眼を置いた制御に対する\( q_i(\alpha) \)と\( q_i(\alpha) \)の値をそれぞれ\( q_{iL} \)と\( q_{iH} \)として対応する\( \alpha \)の値を\( \alpha_{min} \)と指定する。このとき、\( c_i, d_i, c_i, d_i \)の値並びに\( c_i, d_i, c_i, d_i \)の値が（14）、（15）式の通り求められ、\( q_i(\alpha) \)と\( q_i(\alpha) \)の形式が決定する。

\[
q_i(\alpha) = \begin{cases} \frac{Q_{iH}}{Q_{iL}} & \text{if } x \leq Q_{iL} \\
\frac{Q_{iH}}{Q_{iL}} & \text{if } x \geq Q_{iH} \end{cases}
\]

\[
q_i(\alpha) = \begin{cases} q_{iL} & \text{if } x \leq Q_{iL} \\
q_{iH} & \text{if } x \geq Q_{iH} \end{cases}
\]

\[
\begin{align*}
c_1 &= \frac{q_{iL}}{Q_{iL}} \\
d_1 &= \frac{\alpha_{min} - \alpha_{max}}{ln (\frac{Q_{iH}}{Q_{iL}})} \\
c_2 &= \frac{q_{iH}}{Q_{iH}} \\
d_2 &= \frac{\alpha_{min} - \alpha_{max}}{ln (\frac{Q_{iH}}{Q_{iL}})}
\end{align*}
\]

以上のようになり\( q_i(\alpha) \)と\( q_i(\alpha) \)の形式を定めると、\( r(\alpha) \)の場合と同様に、後述する数値解析結果からわかる通り\( \alpha \)の値を\( \alpha_{min} \)から\( \alpha_{max} \)の範囲で線形的に増減することで、制御対象物の応答抑制に主眼を置いた制御から、ストロークの抑制に主眼を置いた制御へ、滑らかに制御を変化させることができる。

（2）可変ゲイン行列の多項式近似

制御力の制約を考慮する場合には（6）式、ストロークの制約を考慮する場合には（10）式の重み係数マトリック
スを用いて、\( \alpha_{\min} \)から\( \alpha_{\max} \)の範囲で適当な数の\( \alpha \)をサンプリング値として選定し、各\( \alpha \)に対して（4）式のフィードバックゲイン\( G(\alpha) \)を計算する。次に、フィードバック値を選び、対応するパラメータ\( \alpha \)の値\( \alpha_0 \)に対して数値制御ゲイン行列\( G_0 \)を求める。\( G(\alpha) \)の各要素を対応する\( G_0 \)の要素に対する比として、（16）式のように表示する。

\[
G(\alpha) = G_0(\alpha) \cdot G_0(\alpha) \cdot \ldots \cdot G_0(\alpha) \cdot G_0(\alpha) \quad (16)
\]

ここで、\( j \)は観測数、\( G_0(\alpha) \)は\( G_0 \)の第\( i \)要素を、\( G_1(\alpha) \)は\( G_0 \)と\( G(\alpha) \)の第\( i \)要素の比を表す規準化可変ゲイン行列の第\( i \)要素である。

\( G_1(\alpha) \)について、（17）式に示す通り多項式近似を行う。\( \alpha \)に対して\( G_1(\alpha) \)は滑らかに変化し、制御力の範囲を適切に設定すれば比較的低い次数の多項式により、実用上充分な精度で近似することが可能と考えられる。

\[
G_1(\alpha) = g_0 + \sum_{j=1}^{L} a_j \cdot \frac{\alpha - \alpha_0}{\alpha_0 - \alpha_{\min}} \quad (17)
\]

ここで、\( g_j \)（\( j = 1 \sim L \)）は\( G_1(\alpha) \)の近似多項式の係数であり、\( L \)は多項式の次数を表している。

### 2.3 可変ゲイン行列の更新アルゴリズム

可変ゲイン制御を実行する場合には、DSP（Digital Signal Processor）等の数値演算プロセッサを用いて、あるサンプリング時間毎に可変ゲイン行列を更新し、制御力を更新する。制御力はAMDストロークの、これらが目標値に対する相対誤差に応じて、各サンプリング時間毎に\( \alpha \)を更新し、装置能力の制約内で制御性能を向上させるアルゴリズムを図2に示す。用いるパラメータ及びアルゴリズムの説明を以下に示す。

### [パラメータ]

\( \alpha_i \)：制御開始前から\( i \)番目の時間ステップの\( \alpha \)の値

\( Y_i \)：制御開始前から\( i \)番目の時間ステップの観測状態量

\( U_i \)：制御開始前から\( i \)番目の時間ステップの制御力

\( x_{s_1} \)：制御開始前から\( i \)番目の時間ステップにおける\( \alpha \)の値

のストローキの予測値で、\( i \)番目の時間ステップのストローキとストローキ速度\( x_{s_1} \)から評価する。

\( U_C \)：制御力の境界値

\( U_T \)：制御力の目標値で、\( U_C \)よりも小さい範囲で設定

\( x_{s_1} = \text{AMDストロークの目標値} \)

\( \beta_i \)：\( \alpha_i \)の更新に用いるパラメータ、\( \Delta \alpha : \alpha \)の増分

### [アルゴリズム]

#### Step1

制御時間ステップを\( i = 0 \)として、制御開始時で適当な\( \alpha_i \)の初期値\( \alpha_{\min} \)を設定する。

\[
\alpha_i = \alpha_{\min} \quad (18)
\]

#### Step2

\( i = i + 1 \)として観測状態量\( Y_i \)を計算し、制御力の制約を考慮する場合（Case1）は、制御力\( U_i \)を（19）式により計算する。\( U_i \)の目標制御力\( U \)に対する相対誤差に相当するパラメータ\( \beta_i \)を（20）式により求める。

\[
U_i = G(\alpha_{i-1}) \cdot Y_i \quad (19)
\]

\[
\beta_i = 1.0 - \frac{U_i}{U_T} \quad (20)
\]

### 図2 αの更新アルゴリズム（on-line計算）

AMDストロークの制約を考慮する場合（Case2）は、ストローク\( x_{s_1} \)とストローク速度\( x_{s_1} \)を計算し、（21）式により\( \Delta x_{s_1} \)後のストロークの予測値\( x_{s_1} \)を計算する。\( x_{s_1} \)の目標値\( x_{s_1} \)に対する相対誤差に相当するパラメータ\( \beta_i \)を（22）式により算出する。

\[
x_{s_1} = x_{s_1} + \Delta x_{s_1} \quad (21)
\]

\[
\beta_i = \frac{x_{s_1}}{x_{s_1}} \quad (22)
\]

#### Step3 Step2の\( \beta_i \)に基づき\( \alpha_i \)を下式により更新する。

\[
\alpha_i = \alpha_{i-1} + \Delta \alpha \cdot \beta_i \quad (23)
\]

### （20）と（23）式、または（22）と（23）式を用いることで、滑らかな\( \alpha_i \)の更新が可能となり、特に装置能力の目標値に近付けられる制御力の制約を抑えることができる。

#### Step4 \( \alpha_i \)の値を下限値と上限値の範囲で設定する。

\[
\alpha_{\min} \leq \alpha_i \leq \alpha_{\max} \quad (24)
\]

#### Step5 修正した\( \alpha_i \)の値に基づいて、制御力\( U_i \)を計算する。\( U_C \)を越える場合は下式により頭打ちにする。

\[
U_i = U_C - \text{sgn}(U_i) \quad (25)
\]

#### Step6 制御力信号を出力し、Step2へ戻る。

本アルゴリズムを用いて\( \alpha \)を更新する場合の基本性能に関する考慮とパラメータ設定の方針を、APPENDIXに示す。本アルゴリズムの主要なパラメータは、装置応答の目標値と\( \Delta \alpha \)である。目標値は装置の作動を保証する外乱...
解析モデル

建築構造物の振動モデルとして、図3に示すようにN層のせん断ばねモデルを想定し、1台のAMDMをこの建物モデルの頂部に設置して制御を行うものとする。

3.1 評価関数

Case 1 制御力の制約を考えた場合

建物モデルの各層速度のみに単位の重み係数を与える、速度評価関数を用いる。(27)式の状態ベクトルと制御力Uに対応して評価関数是什么(28)式で与えられる。

ここで、\(x_j, k_i (i = 1 \sim N)\) : 建物モデルi層の変位・速度、\(x_k, x_l : \) AMMDのストーク・ストーク速度

\[J_U = \int_0^\infty \left( X^T Q X + U^T R (\alpha) U \right) dt\]

重み係数マトリックスQは以下の通りである。

\[Q = \begin{bmatrix} I_{N \times N} & \begin{bmatrix} 0_{N \times N} \\ 0_{2 \times 2N} \end{bmatrix} \\ \begin{bmatrix} 0_{2 \times 2N} \\ 0_{2 \times 2N} \end{bmatrix} \end{bmatrix} \]

I_{N \times N} は単位行列、\([0]_{N \times N} \) 等は零行列であり、添字は行列のサイズを表している（以下同様）。

Case 2 ストークの制約を考慮の場合

建物モデルの各層速度とAMMDストークに単位の重み係数を与え、これらの重み係数に(29)式で示す通り\( \alpha \)の関数である\( q_k (\alpha) \) と\( q_l (\alpha) \) をかけて、建物モデルの速度に与える重み係数と、ストークに与える重み係数のバランスを変化させる。式(27)の状態ベクトルと制御力Uに対応して評価関数是什么(29)式で与えられる。

\[J_S = \int_0^\infty \left( X^T Q (\alpha) X + U^T R (\alpha) U \right) dt\]

重み係数マトリックスQ(\( \alpha \))は以下の通りである。

\[Q (\alpha) = \begin{bmatrix} q_k (\alpha) \cdot I_{N \times N} & \begin{bmatrix} 0_{N \times N} \\ 0_{2 \times 2N} \end{bmatrix} \\ \begin{bmatrix} 0_{2 \times 2N} \\ 0_{2 \times 2N} \end{bmatrix} \end{bmatrix} \]

4. 制御性能の検討

装置能力として制御力あるいはストークの制約を考える可変ゲイン制御のそれぞれについて、可変ゲイン行列の構成例とEl-Centro1940NS地震波を用いた時刻歴応答解析による制御性能の検討結果について述べる。尚、本検討ではtonf, m, secの単位に対して制御設計時の重み係数を設定したことを付記する。

4.1 制御力の制約を考慮した可変ゲイン制御 Case 1

4.1.1 制御性能の検討方法

制御対象モードはTMDと建物1次モードの連成モード（1-1次、1-2次と呼ぶ）及び建物2次モードとし、観測側振動はAMMDと建物10階、5階各々の速度、変位とした。(28)式の評価関数是什么を用いて、前報で示した複数モード制御手法を適用し、観測側振動に対する出力フィードバックゲインを評価した。外乱は、El-Centro1940NS地震波の最大加速度を20, 40, 60, 80, 100Galの5段階に変化させて入力し、制御性能を検討した。
制御各観α可能）が大きくすぎない算定範囲応範はG5Vり規準を最大示に，（2）可変ゲイン行列の多項式近似
αを0.2-2.0まで0.2毎に増加させて可変ゲイン行列G（α）のサンプル値を求め，G（α）の各要素をα=1.0に対して求めた定数制御ゲインの対応する要素により規準化し，規準化可変ゲインを評価した。

各観測状態量に対する規準化可変ゲインの多項式近似の結果を図4に示す。αの次数は3次とした。αに対し規準化可変ゲインは滑らかな変化し，各サンプル値に対する同定精度は98.9〜100%である。図中GMDとGMYはAMDのストロークとストローク速度に対するゲイン，G10DとG10Vは建物10階の変位と速度に対するゲイン，GSDとG5Vは建物5階の変位で対応する制御力を示す。

同定した可変ゲイン行列を用いて，αを0.2から2.0まで変化させて求めた制御系のモード減衰を図5に示す。図中には可変ゲイン行列を用いない，直接求めた制御系のモード減衰も示している。両者は良く一致しており，実用的な範囲でモード減衰が滑らかに変化している。

### 4.1.3 時刻応答解析

(1) 可変ゲイン制御パラメータの設定

制御パラメータを以下の通り設定した。

制御力の限界値：Uc = 310m/s

初期値：αmin = 1.0，αの変更：αmin = 0.2，αmax = 2.0

制御のサンプル値周期：Δτ = 0.1秒

目標制御力：Uτ = 0.8ton/s

ここで，Ucは最大入力加速度40Gal時のα=1.0に対する最大制御力に対応している。Uτは装置の諸元を保証する外乱レベルの大きさと制御力の飽和が許容される程度に応じて設定すべき良い。本例におけるUτはUcの65%で，APPENDIXの「1.装置応答と目標値の関係」で示した63.6%にほぼ対応しており，制御力は限界値を超えた時点で建物の変位増加が制御されたものであると設定されている。これは，状態変数を用いる最適制御では，制御力で少なくとも1/2以上のゲイン余裕があることは良く知られており，出力フィードバック制御の本例でも同程度の制御力の結果を許容されるためである。

可変ゲイン制御の適応性を規定するΔα・Nは，αの設定範囲0.2〜2.0に対してαの振幅限界（Δα・N×0.1で略算可能）が大きくすぎない範囲で3.0に設定した。

(2) 応答解析結果とその考察

各最大入力加速度に対する建物10階の最大応答変位とr.m.s応答変位ならびに最大応答加速度とr.m.s応答加速度を，対応する非制御時の応答値で規準化して図6（a），（b）に示す。また，AMD及び参考としてTMDの最大ストロークを最大入力加速度20Gal時のTMDの最大ストロークにより規準化して図6（c）に示す。図6（d）には，同じ最大制御力を生じる定数ゲイン制御の結果が示す。

---

![図4 可変ゲインの多項式近似](image)

![図5 制御系のモード減衰](image)
これらの結果から建物10階の最大応答値は、最大入力加速度が20Gal時の最大応答加速度に例が見られる以外、可変ゲイン制御の結果が定数ゲイン制御の結果よりも小さく、この可変ゲイン制御の優位性はrms応答においてより顕著に見られる。最大ストロークは定数ゲイン制御の結果よりも大きく、制御力の制約内でマスの動きをより大きくすることで制御性能を高めている。したがって、制御力に対してストロークに比較的余裕がある場合は、本制御手法は制御性能を向上させる上で有効と考えられる。

最大入力加速度が40Galと100Galの場合に対し、建物10階の応答加速度とα及び制御力の時刻歴波形を図6に示す。入力加速度の変化に応じてαを更新して制御強さを変化させ、制御力の制約内で制御性能を向上させていることがわかる。また、制御強さの変化が滑らかなため、建物10階の応答加速度には制御力の切り換えに伴うチャッキングによるスパイクノイズ等は生じていない。

目標制御力を大きくすれば、外乱が小さい範囲の制御性能は向上するが、大きな外乱に対して制御力の飽和が生じることにより制振効果が低下し、飽和が発生すると建物の応答加速度にスパイクノイズを生じて効果は更に低下する。目標制御力を小さくすれば、外乱が小さい範囲での制御性能は低下するが、大きな外乱に対するスパイクノイズの発生を抑え、制御性能の低下を抑制できる。目標制御力は、このようなトレードオフを考慮して制御力の飽和許容程度と、実適用時には供給可能な制御パワーやも考慮して、装置の作動を保証する外乱レベルに応じて設定すれば良い。

4.2 ストロークの制約を考慮した可変ゲイン制御 Case2

4.2.1 制御性能の検討方法

制御対象モデルと観測状態量、制御力の制約を考慮する場合と同じとした。(29)式の評価関数を用いて、観測状態量に対する出力フィードバックゲインを評価した。外乱は、El-Centro1940NS地震波の最大加速度を20, 40, 60, 80, 100, 150Galの6段階に変化させて入力し、制御性能を検討した。

4.2.2 可変ゲイン行列の構成とその結果

(1) 評価関数の設定

構造物の応答抑制に主眼を置いた制御に対するq_Hとq_Lの組合わせ及び対応するαの値、並びにストロークの抑制に主眼を置いた制御に対するq_Hとq_Lの組合わせ及び対応するαの値を以下の通り設定する。

<table>
<thead>
<tr>
<th>q_H</th>
<th>q_L</th>
<th>αmax</th>
<th>αmin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

このとき、規準の制御強さをα=1.0とすると、(12)式
から対応する重み係数の値は \( q_0 (\alpha_0) = 7.743 \times 10^2 \),
\( q_1 (\alpha_1) = 1.668 \times 10^4 \) となる。
(2) 可変ゲイン行列の多項式近似

\( \alpha \) を 0.2 から 2.0 まで 0.2 に増加させて可変ゲイン行列
\( \mathbf{G} (\alpha) \) のサンプル値を求め, \( \mathbf{G} (\alpha) \) の各要素を \( \alpha_0 = 1.0 \) に
対して求めた定数制御ゲインの対応する要素により規準化
し, 規準化可変ゲインを評価した。

各解変状態に対する規準化可変ゲインの多項式近似の結果を図8に示す。\( \alpha \) の次数は 4 次とした。\( \alpha \) に対し規
準化可変ゲインは滑らかに変化し, 各サンプル値に対する
同定精度は 99.9 〜 100%である。図中GMDとGMVはAMD
のストロークとストローク速度に対するゲイン, G10Dと
G10Vは建物 10 階の変位と速度に対するゲイン, G5Dと
GVは建物 5 階の変位と速度に対するゲインを示す。

同定した可変ゲイン行列を用いて, \( \alpha \) を 0.2 から 2.0 まで
変化させて求めた制御系のモード減衰を図9に示す。図中
には可変ゲイン行列を用いない, 直接求めた制御系のモー
ド減衰をも示している。両者は良好に一致している。

\( \alpha = 0.2, 0.8, 1.0, 1.2, 2.0 \) の場合とパッシブ制御の場合
に対して, 全周波数領域にわたって (30) 式に示す単位加
速度振幅の地震外力が作用する場合の, 建物モデル最上部
の速度及びストロークの周波数応答を評価した。

\[
F = e^{i \omega t} \quad \cdots (30)
\]

周波数応答を図10に示す。横軸は, 振動数 \( \omega \) を建物モー
モデルの非制振時の 1 次固有振動数 \( \omega_0 \) で規準化している。\n
縦軸は, 建物モデル最上部の周波数応答 \( V (\omega) \) は, 非
制振時の建物モデル最上部の 1 次固有振動数における
周波数応答 \( V (\omega_0) \) で規準化し, AMDストロークの周波数
応答 \( x_s (\omega) \) はパッシブ制御時のTMDストロークの周波数
応答をピーク振幅で規準化している。建物モデル最上部
速度の周波数応答は, 1-1 次と 1-2 次及び 2 次モードにおい
て \( \alpha \) が減少するにつれて振幅が増加して非制振時の応答
1.0に近づき, 逆にAMDストロークの周波数応答は振幅が
減少している。このことから \( \alpha \) の減少に伴って建物応答
を抑制する制御からAMDストロークを抑制する制御へ滑
らかに変化していることがわかる。

4.2.3 時刻刻応答解析

(1) 可変ゲイン制御パラメータの設定

制御パラメータを以下の通り設定した。

限界ストローク: 50cm, 制御力の限界値: \( U_c = 2.5 \) tonf, 
\( \alpha \) の初期値: \( \alpha_{\text{ini}} = 1.0, \alpha \) の最小 - 最大値: \( \alpha_{\text{ini}} = 0.2, \alpha_{\text{max}} = 2.0 \), ストローク予測のための時間 刻み \( \Delta T = 0.2 \) 秒
制御のサンプリング周期: \( T = 0.2 \) 秒（\( T = 1.2 \) 秒に対し
N=30 に相当）, 目標ストローク: \( x_{\text{ref}} = 20 \) cm, \( \alpha \) の増分: 
\( \Delta \alpha = 0.03 \)（\( \Delta \alpha \cdot N = 0.9 \)）

ストロークは限界値に達すると装置を停止させる必要
があるため, 目標値は限界値に対してAPPENDIXで示し
た6.3%よりも必ず小さく設定する必要がある。目標値を
大きくすると, 外乱レベルが小さい範囲での制御性能は向
示す各しは、制御力が低下する。従って、目標値はこのトレードオフを考慮して装置の作動を保証する外乱レベルに応じて設定すれば良い。本問題ではEl-Centro1940NS地震波の150Gal入力に対しても装置を作動させる条件から、ストロークの限界値に対して目標値を40％に設定した。

可変ゲイン制御の速応性を規定するΔα・Nは0.9に設定し、αの振動振幅（Δα・N×0.1で略算可能）で制御力の制約を考慮する場合よりも小さくなる様にした。これは、制御力はαの変更により直接値が変化するのに対し、ストロークはαが変化した結果の応答として変化するため、αを変化させた効果が装置応答に表れる時間遅れを考慮して変化速度を遅めて設定する必要があるためである。

（2）応答解析結果とその考察

各最大入力加速度に対する建物10階の最大応答加速度を、対応する非制御時の応答値で規準化して図11（a）に示す。図11（a）中には、αを1.0、1.25、1.5、1.75、2.0に固定した場合の定数ゲイン制御による線形応答の結果とパッシブ制御の結果を合わせて示している。また、AMDの最大ストロークを最大入力加速度20Gal時のTMDの最大ストロークにより規準化して図11（b）に示す。図11（b）中には、αを1.0、1.25、1.5、1.75、2.0に固定した場合の定数ゲイン制御の線形応答の結果とパッシブ制御のTMDストロークも図11（b）同様に規準化して示している。

これらの結果から、最大入力加速度が40Gal程度までの小さい範囲では、最大応答加速度及び最大ストロークは建物応答の抑制に主眼を置いたα=2.0の結果にはほぼ一致している。最大入力加速度が増加するにつれて、可変ゲイン制御の最大ストロークが増加する割合は低下し、150Gal入力時にはほぼパッシブ制御時のTMDの最大ストロークと等しく約45cmに達した。また、最大加速度応答は最大入力加速度の増加につれて徐々にα=1.0の結果に近付いており、最大入力加速度の増加に伴って、建物応答の抑制に主眼を置いた制御からストレスコの抑制に主眼を置いた制御へ、制御性能が滑らかに変化していることがわかる。

最大入力加速度が60Galと150Galの場合に対し、建物

![図11 規準化最大応答加速度と最大ストローク](image)

![図12 時刻歴応答波形](image)
5. まとめ

本論では、地震・風等の強度・特性が多岐に渡る外力に適応して装置能力の制約下で制振効果を最大化に発揮させるため、制御力やAMDストローカの単一の装置能力の制約を考慮した実用的な可変ゲイン制御の設計手法を提案した。次に、建物を模倣した10質点の建物構造物の振動モデルをAMDで制御をする場合を想定し、装置能力として制御力の機能をAMDストラクとして考慮するような場合について、本手法の適用方法を示し数値解析により有効性を実証した。制御能力の検証では、低周波数初めの制御対象とし外力の等価的には全体レベルの変化に追従して制御が有効に作動することを確認するため、時系列の動的レベルの変化が大きい外力の代表例としてEl-Centro 1940 NS地震波を用いた場合の時刻歴応答解析結果を示した。

本手法の特徴及び本検討により、明らかとなったこと以下に示す。

1) 本手法により、制御力やAMDストローカ等の単一の装置能力を制限として考慮できる。本手法は、異なった装置能力のレベルに対応した複数の安定制御ゲインをパラメータαの制御関数として近似するoff-lineの設計ステップと、目標値に対する装置応答の相対誤差に応じてαを連続的に更新し、装置能力の制約内で制振性能を向上させるon-lineの制御実行ステップから成っている。本手法は、出力フィードバックによる複数コーデ制御手法とも容易に組合わせることが可能ですで、モード数次元の制約を受けず、各αに対する安定性を確保した制御ゲインを用いるため高次モードに対するスビリオーブ不安定を抑制できる。また、制御を不連続に切り替えずに滑らかに切り換え、チャリティを生じにくいメリットがある。

2) 正弦波応答に対する、提案したαの更新アルゴリズム（図2参照）の基本特性について考察し（APPENDIX参照），本制御により装置応答と目標値の比率が一定になるように自動的にαが更新される原理を示した。また、建物応答において卓越する1次モードの固有周期に着目し、主要な制御パラメータ（装置応答の目標値αの増分を設定する）を提案した。

3) 装置能力として制御力の制約を考慮する場合には、制御強さの範囲を設定し、パラメータαの値の変化に対応して制御強さが範囲内で滑らかに変化するように設定する。目標制御力に対する制御力の相対誤差に応じて、提案したアルゴリズムによりαを連続的に更新することにより、許容される制御力の値の変動を供給可能な制御パワーセルに応じて制御の制約内で制振性能を向上させることができる。制御力に対してストローカに比較的余裕がある場合、本手法は制御性能向上させる上に有効と考えられる。

4) 装置能力としてAMDストローカの制約を考慮する場合は、パラメータαの値の変化に対応して建物応答の抑制に主制を置いた制御からはストラクの抑制に主制を置いた制御へ、滑らかの制振性能が変化するように設定する。ストラクの目標値に対する予測の相対誤差に応じて、提案したアルゴリズムによりαを連続的に更新することにより、制御ゲイン制御の場合と比べ、ストラクの過大化を抑制しながら装置の作動範囲を拡大できる。

尚、本論文では1台のAMDを用いる場合について制御設計手法を示したが、複数のAMDを用いる場合への拡張と実験による制御性能の検証については別途報告する。

参考文献

1) 長谷正一, 西山正三: アクティブプラグゲインを用いた建物の振動制御 (その1), 日本建築学会構造系論文集, 第468号, pp.27 - 38, 1995.2
2) 長谷正一, 西山正三: アクティブプラグゲインを用いた建物の振動制御 (その2), 第450号, pp.65 - 72, 1995.4
3) 新谷隆, 石丸長昇: 前述の方法とその抑制効果に関する実験的研究 (その1), 日本建築学会構造系論文集, 第450号, pp.73 - 80, 1995.4
4) 鈴木哲夫: ACTIVEアクティブ制御の効果を考慮した建物の振動制御, レジオノックス論文集, 第1号, pp.68 - 75, 1995.8
7) 秋村行, 木村雄二: 衝撃制御を用いたで高速強制振動制御の応用, システム制御情報学会論文誌, 第5号, pp.10 - 15, 1989.4
9) B. Bhartia and I. Nagashima : On Saturation Control of Buildings with Active Mass Damper, Transactions of the Japan National Symposium on Active Structural Response Control, pp.57 - 64, 1992.3
10) B. Bhartia, Y. Fujino and J. Mongkol : Control Algorithm for AMD with Constraints, Proc. of the First World Conference on Structural Control, Los Angeles, TP270 - 78, 1994.8
15) 藤田隆史, 鎌田義美 : 多自由度システムおよび非線形アクテイブアンプを用いた高次モード制御アクティブプラグゲインの基本的研究 (第1報), 日本機械学会論文集 (C編), 第45号, pp.87 - 91, 1992.1
16) 田村正夫, 増川別佐: 鉄骨建物のアクティブ制御システム (その14), 日本建築学会構造系論文集, 第450号, pp.753 - 754, 1993.9
APPENDIX αの更新アルゴリズムの基本特性

図2に示した、αの更新アルゴリズムの基本特性を明らかにするために、制御対象回路の応答が正弦波応答を示す場合について、半周期毎のαの増減を考察する。観測状態量の正弦波応答の振幅を\( \alpha \)と呼ぶ。応答を示す2π/\( N \)で分割した時間刻み\( \Delta t \)をとり、\( \alpha \)の値が変わるたびに、装置応答の振幅が変化する。この場合、半周期毎の\( \alpha \)の値に増減が生じない状態について、YとP及びαの時間変化を図A1に模式的に示す。

装置応答が目標値を越える場合、半周期毎の\( \alpha \)の値は装置応答が目標値と一致する点において半周期につき2個の極値を持ち、装置応答の振幅数に対して2倍の振幅数を増減する。半周期の中でこの\( \alpha \)の増減が、図A1に示した通り、装置応答Pは正弦波応答とは異なり幅をとった振幅の傾向を示すが、\( \alpha \)の振幅振幅があまり大きくない範囲では、ほとんど正弦波と近似して基本的な特性を論じることができると考えられる。

装置応答\( P \)を正弦波と近似し、正弦波応答の振幅を装置応答の目標値\( P_0 \)に対する比の形で\( \mu P_0 \)とし、周期\( T \)を2N分割した時間刻み\( \Delta t \)をとる。このとき、\( \Delta t \)秒毎の装置応答\( P_t \)は下式で表される。

\[
P_t = \mu P_0 \sin \left( \alpha_0 \Delta t \cdot i \right)
\]

ここで、\( \alpha_0 \)は、\( \frac{\mu}{N} \)として下式で表される。

\[
\alpha_0 = \alpha_0 + \Delta \alpha \cdot \sum_{i=1}^{N} \beta_i = \alpha_0 + \Delta \alpha \cdot \sum_{i=1}^{N} \left( 1 - \mu \sin \left( \alpha_0 \Delta t \cdot i \right) \right)
\]

ここで、半周期後の\( \alpha \)の値は、\( m = N \)として下式で表される。

\[
\alpha_m = \alpha_0 + \Delta \alpha \cdot N \left( 1 - \frac{\mu}{N} \tan \left( \frac{\pi}{2N} \right) \right)
\]

(3) 式の右辺第二項より、半周期後の\( \alpha \)の値の方が\( \Delta \alpha \)と\( N \)及び\( \mu \)の値を変えることで制御有可能である。また、変化量は\( \Delta \alpha \cdot N \)に比例し、\( \Delta \alpha \cdot N \)が制御可能範囲の制御器を設定できる。以下に装置応答と目標値の関係及び可変ゲイン制御の選定法について考察する。

1. 装置応答と目標値の関係

(3) 式より、\( \mu \)が一定に固定される\( \mu_s \)に一致する時、半周期毎の\( \alpha \)の値は変化しない。

\[
\mu = \frac{1}{N} \cdot \tan \left( \frac{\pi}{2N} \right)
\]

(4) 式より、装置応答を目標値の\( \mu_s \)倍に達すると、半周期毎の\( \alpha \)の値は変化せず、目標状態になる。装置応答が目標値の\( \mu_s \)倍よりも大きくならず、半周期毎の\( \alpha \)の値は増加して装置応答を増大させる方向、すなわち制御を強める方向に変化し、装置応答が目標値の\( \mu_s \)倍よりも大きくなると、半周期毎の\( \alpha \)の値は減少して装置応答を抑制する方向、すなわち制御を弱める方向に変化し、\( \mu \)が(4)式の関係を満たす\( \mu_s \)へ近づくように自然に\( \alpha \)が更新されることがある。

図A2に(4)式の(4)及び(5)の関係を示す。\( \mu_s \)の値は\( \frac{1}{N} \)に一致する時、\( \mu_s \)が変化し、装置応答が目標値の\( \mu_s \)倍に達すると、半周期毎の\( \alpha \)の値は増加して装置応答を増大させる方向、すなわち制御を強める方向に変化し、装置応答が目標値の\( \mu_s \)倍に達すると、半周期毎の\( \alpha \)の値は減少して装置応答を抑制する方向、すなわち制御を弱める方向に変化し、\( \mu \)が(4)式の関係を満たす\( \mu_s \)へ近づくように自然に\( \alpha \)が更新されることがある。

2. 本可変ゲイン制御の選定法

可変ゲイン制御の選定法を考察するにあたり、\( \Delta \alpha \cdot N \)を大きくすれば良いが、大きくすると\( \alpha \)の振幅振幅も大きくなるので好ましくない。半周期毎の\( \alpha \)が変化しない正常状態での\( \alpha \)の振幅振幅は、装置応答が目標値に達した時の\( \alpha \)の値と\( \alpha_0 \)との差として評価できる。具体的には、(5)式を満足する最小の\( \mu \)を考慮するとき、\( \alpha \)の振幅振幅の大きさは(6)式で与えられる。

\[
\mu_s = \frac{\mu_s}{P_T} \sin \left( \alpha_0 \Delta t \cdot i \right) \\
\mu_s = \frac{\mu_s}{P_T} \sin \left( \alpha_0 \Delta t \cdot (i+1) \right)
\]

(5)式より、\( \mu_s \)が一定の条件で\( \mu \)に一致する時、\( \mu_s \)が変化し、装置応答が目標値の\( \mu_s \)倍に達すると、半周期毎の\( \alpha \)の値は増加して装置応答を増大させる方向、すなわち制御を強める方向に変化し、装置応答が目標値の\( \mu_s \)倍に達すると、半周期毎の\( \alpha \)の値は減少して装置応答を抑制する方向、すなわち制御を弱める方向に変化し、\( \mu \)が(4)式の関係を満たす\( \mu_s \)へ近づくように自然に\( \alpha \)が更新されることがある。

図A3に(4)式の(4)及び(6)の関係を示す。\( \mu_s \)が変化し、装置応答が目標値の\( \mu_s \)倍に達すると、半周期毎の\( \alpha \)の値は増加して装置応答を増大させる方向、すなわち制御を強める方向に変化し、装置応答が目標値の\( \mu_s \)倍に達すると、半周期毎の\( \alpha \)の値は減少して装置応答を抑制する方向、すなわち制御を弱める方向に変化し、\( \mu \)が(4)式の関係を満たす\( \mu_s \)へ近づくように自然に\( \alpha \)が更新されることがある。

(1995年7月10日原稿受理、1996年1月9日採用決定)