繰返し軸力を受ける鋼部材の弾塑性挙動と
軸部破断に関する研究 その1

STUDIES OF ELASTO-PLASTIC BEHAVIOR OF STEEL MEMBER
UNDER CYCLIC AXIAL FORCE AND ITS FRACTURE (No. 1)

穂積秀雄*, 牧野行伸**, 坂井誠***, 平野道勝****

Hideo HODZUMI, Yukinobu MAKINO, Makoto SAKAI
and Michikatsu HIRANO

This paper is a report about a structural characteristic of a steel member under a cyclic axial force and its strain hysteresis until crack occurs in its local buckling section. Main experimental variables were shape of section, and width-thickness ratio. Slenderness ratio was made constant.

Main findings were as follows.
1) A stain concentration occurred in a local buckling section. With the increase of deformation amplitude, the stain amplitude in the concentrated portion increased and reached dozens of percent.
2) Deformation capacity up to fracture depended on its shape of section and width-thickness ratio, and a steel square tube which has a greater width-thickness ratio reached an earlier fracture.

keywords : steel member, cyclic axial force, local buckling, fracture, elasto—plastic behavior

鋼部材 、繰返し軸力、局部座屈、破断、弾塑性挙動

1. 序

激震時，繰返し力を受けた鋼部材に塑性局部座屈が生じたときに
は，荷重履歴の早期の段階で亀裂が発生し，破断に至ることがある。
1985年兵庫県南部地震においても筋かいや立体トラスの弦材などの
鋼管に被害が生じている。この度の建物被害においては，この破断
が，筋かいが設けられていて，軸力部材となった角形鋼管の柱で生
じたこと*1**である。

実験室でも角形鋼管の筋かいの破断が確認されていて*1---**。一部
の関係者間では，開断面を筋かいに用いることに危険があるとされ
た。しかし，柱やトラス部材では開断面が多用され，これらの部材
にあっても，軸力が卓越する場合には，この破断が生じることは上
述の被災例が示すとおりである。従って，亀裂の発生に到るまでの
力学的経緯や，破断までの荷重履歴および吸収エネルギーなどの部
材性能を把握することは重要な課題と考えられる。

しかしながら，部材に生じる亀裂の発生メカニズムの究明を直接の目的
とした研究は，軸力部材*2，曲げ部材*3を問わず極めて少なく，系
統的な研究は皆無に近い状態にある。一方，破断に至るまでの吸収
エネルギーなどの把握を目的とした軸力部材の研究は，矢部*4**の効
力的研究があるものの，開断面*5---**では乏しい現状にある。

筆者等は，曲げ部材*2と筋かい*3を対象に，塑性局部座屈面
に生じる亀裂の発生メカニズムを追求し，局部座屈断面では断面の
限られた領域で応力を伝達し，それが限られた領域，とりわけ亀裂の
発生に到る箇所では，極めて大きいひずみ振幅が生じていることを
報告してきた。

本研究は，亀裂発生までの力学的経緯を把握することを最終目的
に，先ずその第1段階として，亀裂発生箇所とその周辺のひずみ履
歴を追求するとともに，併せて弾塑性挙動を把握したものである。

なお，載荷サイクルごとの耐力の推移，破断までに部材が吸収する
エネルギー等は，詳細報告する。

本論文は，大会発表をまとめたものであるが，その概要*1** 原稿
の提出後，荷重載荷に懸念が生じたので，載荷装置と計測装置を再
構築して検討した。実験では，計測装置の関係で信頼性を増幅して計
測していたが，検討の結果，正しい荷重は，梗概の荷重を全ての
荷重載荷で一律に1.2倍するべきであることが判明した（材料試験
と荷重変形試験を除く）。実験に供した鋼管の残りを用いて再現試
験を行ったところ，良好な一致を見た。

本論文は，梗概を訂正して報告するとともに，併せて再現試験の
結果を示す。

* 東京理科大学工学部建築学科 助手・工博
** 重田建設工業
*** 東京理科大学工学部建築学科 大学院生
**** 東京理科大学工学部建築学科 教授・工博

Research Assoc., Dept. of Architecture, Faculty of Engineering, Science Univ. of Tokyo, Dr. Eng.
Maeda Corporation
Graduate Student, Dept. of Architecture, Faculty of Engineering, Science Univ. of Tokyo
Prof., Dept. of Architecture, Faculty of Engineering, Science Univ. of Tokyo, Dr. Eng.
2. 試験体および実験方法
2.1 試験体
試験体の一覧を表1に示す。名称に関する要約は以下のとおりである。

例 B6 AR C
① H：溶接 H C：鋼管 B：角形鋼管
② 板厚 t = 3, 2(角形鋼管) 3, 5(鋼管) 4, 5 6
フランジ幅 H125 H150
③ 熱処理 AR；アズロール N：焼準
④ 適当量 A：多 B：中 C：少

試験体は、冷間成形円形鋼管（STK400, 記号C, 以降、単に鋼管と呼ぶ）、冷間ロール成形角形鋼管（STKR400, 記号B, 同じく角形鋼管）および溶接組立円形断面材（SS400, 記号H, 同じく溶接H）から成る単体の動力部材である。試験体の図示には、図1に示すように、厚さ6mm、長さ90mmのリブと厚さ50mmのエンドプレートを取り付けた。

実験変数は、断面形状の他に、幅厚比もしくは径厚比、熱処理の有無および含有遊離窒素量とした。幅厚比は、規準値131に対して示された角の区分からP - ⅠおよびP - Ⅱ区分を用い、角形鋼管ではさらにP - Ⅲ区分を採用した。試験体の荷重に与える断面形状の影響と塑性加工の影響を分離するために、アズロール（As Rolled, 記号AR）の全ての試験体に対して、焼準（Normalised, 記号N）を施した試験体を用意した。焼準の加熱を窒素雑気中で行い、850℃で30分間保持、その後空冷とした。

遊離窒素を多く含有する鋼材が塑性加工を受けるとき、その後のひずみ強化処理により、伸び能力が減少するといわれている131。そこで、冷間成形角形鋼管では遊離窒素量を実験変数とし、その量に応じて厚さ1個号AR, A, B, Cを付した。なお、鋼管と溶接Hの遊離窒素量はCに相当するものと考えている。

曲げ座屈の座屈長さを図2に示したビン式支承のピン中心からピン中心までの距離で定義し、この区間で一様に試験体本体の断面を有するものと仮定して座屈長を定義した。細長比は全試験体を通じて共通でλ = 40である。試験体の可伸縮部分の長さLを図1に示すリブ先端間の長さとみなした。λとLの比および図2中の測定区間との比は表1に示したとおりである。これらの比は、溶接Hを除くとほぼ一定であるが、溶接Hでは他の試験体と比べて極めて小ささい。

2.2 実験方法
載荷装置を図3に示す。載荷は、試験体両端に設けられたビン支承を介してオイルジャッキで行った。試験体のセット、曲げ座屈の方向を制御するために、断面せいの1/25の偏心を与えた。この偏心は、溶接Hでは、弱軸と加力中心をずらすことから、断面材では、溶接シェームが曲げ座屈の曲げ引張側となるように与えた。

載荷は、正負交互弾性変形幅で制御した。制御変形幅は、鉛直の計測長さLで計測した伸し量もしくは縮み量がLの0.25%の数値増に相当する。L/しもしくはL/しの値が小さい溶接Hでは、同一載荷サイクルにある他の断面と比べると、より厳しいひずみを受けたことになる。なお、0.25%のひずみは、筒高とスパンの等しい骨組が線間変形角1/200と達したときの、筋かいのひずみでない。
表2 材料の化学成分（％）

<table>
<thead>
<tr>
<th>試験片</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>V</th>
<th>N</th>
<th>FreeN</th>
</tr>
</thead>
<tbody>
<tr>
<td>柔軟組立H形鋼</td>
<td>0.19</td>
<td>0.38</td>
<td>0.43</td>
<td>0.020</td>
<td>0.008</td>
<td>0.03</td>
<td>0.02</td>
<td>0.005</td>
<td>-0.03</td>
<td>0.018</td>
<td>0.008</td>
</tr>
<tr>
<td>○-137.8×3.5</td>
<td>0.16</td>
<td>0.19</td>
<td>0.83</td>
<td>0.013</td>
<td>0.004</td>
<td>0.02</td>
<td>0.02</td>
<td>0.002</td>
<td>-0.03</td>
<td>0.0020</td>
<td>0.0007</td>
</tr>
<tr>
<td>○-137.8×6.0</td>
<td>0.17</td>
<td>0.19</td>
<td>0.78</td>
<td>0.012</td>
<td>0.004</td>
<td>0.02</td>
<td>0.03</td>
<td>0.003</td>
<td>-0.03</td>
<td>0.0019</td>
<td>0.0009</td>
</tr>
<tr>
<td>□-125×125×3.2</td>
<td>A</td>
<td>0.10</td>
<td>0.06</td>
<td>0.29</td>
<td>0.008</td>
<td>0.015</td>
<td>0.04</td>
<td>0.06</td>
<td>0.013</td>
<td>-0.03</td>
<td>0.0004</td>
</tr>
<tr>
<td>□-125×125×3.2</td>
<td>B</td>
<td>0.14</td>
<td>0.03</td>
<td>0.27</td>
<td>0.008</td>
<td>0.019</td>
<td>0.03</td>
<td>0.05</td>
<td>0.009</td>
<td>-0.03</td>
<td>0.0006</td>
</tr>
<tr>
<td>□-125×125×3.2</td>
<td>C</td>
<td>0.14</td>
<td>0.02</td>
<td>0.50</td>
<td>0.013</td>
<td>0.008</td>
<td>0.03</td>
<td>0.03</td>
<td>0.003</td>
<td>-0.03</td>
<td>0.0024</td>
</tr>
<tr>
<td>□-125×125×4.5</td>
<td>C</td>
<td>0.16</td>
<td>0.02</td>
<td>0.43</td>
<td>0.009</td>
<td>0.007</td>
<td>0.02</td>
<td>0.03</td>
<td>0.002</td>
<td>-0.03</td>
<td>0.0003</td>
</tr>
<tr>
<td>□-125×125×6.0</td>
<td>B</td>
<td>0.16</td>
<td>0.02</td>
<td>0.28</td>
<td>0.008</td>
<td>0.021</td>
<td>0.04</td>
<td>0.05</td>
<td>0.015</td>
<td>-0.03</td>
<td>0.0007</td>
</tr>
<tr>
<td>□-125×125×6.0</td>
<td>C</td>
<td>0.15</td>
<td>0.02</td>
<td>0.50</td>
<td>0.014</td>
<td>0.008</td>
<td>0.03</td>
<td>0.02</td>
<td>0.003</td>
<td>-0.03</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

その試験結果は、「す2 局所のひずみ壁窪」で報告する。このひずみの測定にはレーザー変位計を用いた測定方法を開発した11）。すなわち、レーザー変位計とマイクロヘッダー及びマグネットスタンドなどの装置を用い、レーザーが両端を照射するように設置して、マイクロヘッダーで変位計を送るの移動量と移動平面から試験体までの距離を単純的に計測し、試験体の変形前の形状とその変化からひずみ値を算出した。

亀裂の発生は目視で観察し、亀裂幅の測定は通称クラックジェーガーと呼ばれる縦縄ゲージとの比較で行った。

3. 材料試験
化学成分の分析結果を表2に示す。この表から、角形鋼管では遊離窒素の含有量が著しいことがわかる。引張試験片の形状は、JIS Z 2201に規定された5号試験片（角形鋼管平板部（記号F）およびH型鋼）及び12号試験片（鋼管）である。なお、角形鋼管角部（記号CはJISに規定がないため、14号試験片を参照して形状および検点距離を定めた。試験結果は表3に示したおりである。降伏値が生じない場合の耐力は、0.2％オフセット強さの値により求めた。また、一様伸びξは次式により算出した。

ξ=ξ2201+ξ2200

ここで、ξ2201、ξ2200は、引張強さを到達後の強さ80％の応力に対応するひずみである。

図4は、B3ARの平板部の応力ーひずみ曲線を示したものである、遊離窒素の含有量が一様伸びに影響していることが分かる。引張試験の詳細と短縮圧縮試験の結果は、既報11）に示したとおりである。

4. 荷重ー伸縮量曲線
4.1 はじめに
結果を図4に示す。荷重ー伸縮量曲線は、無次元化荷重P/Pₚと無次元化伸縮量δ/δₐで表現する。ここに、Pₚは、材料試験で得た
降伏点σy（角形鋼管では平板部）を用いて、偏心を無視して算出した理論引張強度Aσy（A：計算した実断面積）である。荷重－伸縮量曲線の図中の記号の意味は以下のとおりである。

▲：局部座屈発生 目視により局部座屈が観察された時点。
■：亀裂発生 亀裂幅が0.1mmに達した時点。
ibilidade：亀裂貫通 目視により板厚方向に亀裂の貫通が確認された時点。Oと重なる場合は省略。
○：破断 亀裂の貫通以後、その載荷サイクル数での最大荷重が観測された時点。溶接Hでは、上述の他に、荷重－伸縮量曲線が不安定となった時点。

荷重－伸縮量曲線をみると、引張荷重最大荷重は、鋼管幅厚比の大きい角形鋼管のアズロールの試験体でPnを下回るもの、概ねPnを発現できるようである。また、亀裂の発生（本論文では、亀裂幅が0.1mmに達したときを定義する）は、曲げ試験の段階で、圧縮側に延びがある。亀裂の発生後は、その後の荷重増大には影響を与えないが、亀裂の板厚方向への貫通は、急激な耐力低下を伴う破断を誘導する。なお、溶接Hでは、プランジに生じた亀裂が貫通しても耐力低下は伴わず、亀裂がウェブに進展した時点で、急激な耐力低下が生じたものであった。

角形鋼管の3シリーズの全ての試験体とB6NCでは、試験体幅部に局部座屈が生じ、曲げ座屈は生じていない。

4.2 再現試験の結果

図5は、再現試験を行った試験体6GAR-Rと6B8RE-Rの荷重－伸縮量曲線である。再現試験の荷重－伸縮量曲線は、破断前の不安定な領域を除いて、それぞれ最初の試験体（6GAR, 6B8RE）の曲線と良く一致し、亀裂の発生などの諸現象もほぼ同時期で生じている。このこととは、再現性の高いことを示しているとともに、荷重の修正方法が正しいことを示している。なお、図5-2は、標準引張試験B6NR-Mの結果を併せて示している。

4.3 実験変数の与える影響

図6は、断面形状の影響を検討したもので、いずれの断面も板厚6mm、幅厚比因子P－1および含有酸素量の因子Cである。溶接Hは、可伸縮長さと計測区間の長さにおける比の小さいことから、可伸縮区間において、他の断面の試験体より厳しい破断経路を与えられている。このことを考慮し、図6-1をみると、破断までの変形能は、溶接H、鋼管、角形鋼管の順に大きいことが分かる。このこ

表4 実験結果一覧

<table>
<thead>
<tr>
<th>溶接方法</th>
<th>最大荷重（KN）</th>
<th>計測値（KN）</th>
<th>試験体名</th>
<th>試験体名</th>
</tr>
</thead>
<tbody>
<tr>
<td>H150AR-R</td>
<td>860 (+1)</td>
<td>1002 (−6)</td>
<td>6GAR-R</td>
<td>560 (+1)</td>
</tr>
<tr>
<td>H125AR-R</td>
<td>628 (+1)</td>
<td>830 (−5)</td>
<td>6GAR-R</td>
<td>560 (+1)</td>
</tr>
<tr>
<td>C36AR</td>
<td>366 (+1)</td>
<td>518 (−3)</td>
<td>6GAR-R</td>
<td>560 (+1)</td>
</tr>
<tr>
<td>C6AR</td>
<td>719 (+1)</td>
<td>1007 (−4)</td>
<td>6GAR-R</td>
<td>560 (+1)</td>
</tr>
<tr>
<td>E6AR</td>
<td>831 (+1)</td>
<td>1011 (−5)</td>
<td>6GAR-R</td>
<td>560 (+1)</td>
</tr>
<tr>
<td>BS6AR</td>
<td>503 (−1)</td>
<td>603 (−2)</td>
<td>6GAR-R</td>
<td>560 (+1)</td>
</tr>
<tr>
<td>BS6ARB</td>
<td>478 (−1)</td>
<td>581 (−2)</td>
<td>6GAR-R</td>
<td>560 (+1)</td>
</tr>
<tr>
<td>BS6ARB</td>
<td>443 (−1)</td>
<td>571 (−2)</td>
<td>6GAR-R</td>
<td>560 (+1)</td>
</tr>
<tr>
<td>BS6ARB</td>
<td>529 (−1)</td>
<td>698 (−3)</td>
<td>6GAR-R</td>
<td>560 (+1)</td>
</tr>
<tr>
<td>BS6ARB</td>
<td>848 (−1)</td>
<td>1007 (−2)</td>
<td>6GAR-R</td>
<td>560 (+1)</td>
</tr>
<tr>
<td>BS6ARB</td>
<td>881 (−1)</td>
<td>1123 (−2)</td>
<td>6GAR-R</td>
<td>560 (+1)</td>
</tr>
<tr>
<td>BS6ARB</td>
<td>938 (−1)</td>
<td>1126 (−2)</td>
<td>6GAR-R</td>
<td>560 (+1)</td>
</tr>
</tbody>
</table>

1）パイロットテストとして実施。この試験体に限り、制御ひずみ振幅を1％とした。
2）板厚方向に亀裂が貫通した条件での鋼管の内側の状況を観察するために、この時点で実験を終了した。
3）5試験体の引張載荷荷重後に、それぞれとは異なる方向の横たわる状態で存在した。このため、次の圧縮載荷荷重には延長方向に制限いただけた曲げ荷重が発生し、それぞれの曲げ荷重が引張荷重に転じて、亀裂の進展をみた。従って、実験はこの時点で終了した。
図 6 荷重-伸縮量曲線 （断面形状の影響）

図 7 荷重-伸縮量曲線 （幅厚比の影響）
生じている。この数値は、階層とスパンの等しい骨格が瞬間変形角1/50に達したときの、その骨格に組込まれた筋がいのひずみに相当する。従って、幅厚比の小さい冷間成形角形鋼管は、筋がいをして実用に供することが可能と思われる。

図8は、遊離室素の含有量の影響を検討したものである。図8-1はB3ARシリーズで示したもので、3本の曲線はよく似た挙動を示しているが、破断までの変形能では、B3ARが若干劣った性能を有している。このことは、図8-2に示したB6ARシリーズにも当てはまり、Cの鋼種の変形能が若干高い。図8-3と8-4は、焼純試験体を示したものであるが、それぞれのシリーズにおいて、その挙動には全く違いが見られない。遊離室素の含有量の影響は焼純することにより消減したものですと思われる。その変形能の低下は試験体とその後のひずみ時効硬化により生じているので、影響が消滅することも当然かと思われる。

アズロールの試験体どうしを比較すると、破断までの変形能には、動的の弾性応力が反映されている傾向はあるが、その差は小さく特に素材としての弾性応力が極端に異なるB3ARとあっっても、その変形能は、素材試験における一様伸びの他の試験体との比に比例するほどには小さくはない。

図7と図8により、鋼管と角形鋼管のアズロールの試験体を比較する焼純試験体を比較する。亀裂は局部変形面で生じることから、局部変形の発生点は、亀裂の発生点を支配するものと思われる。局部変形の発生点は、アズロール材と焼純材で異なり、BSシリーズを除き焼純材の方が早期に生じている。ところが、亀裂の発生（亀裂幅が0.1mmに達する時点）は、同一サイクルのほぼ同一変位で生じている。後述するように、例えば角形鋼管では、焼純材の局部変形は、初期のサイクルでは平面部に止まり亀裂の発生する局部に顕著な変形が生じていない。一方、アズロール材では、平面部と局部がほぼ同時に座屈して、この局部の座屈点はアズロール材と焼純材で大きな相違がない。このことが、亀裂発生時点をほぼ同時点とする理由と思われる。亀裂の貫通や破断までの変形能は、若干焼純材が優れているものと思われる。

5. 損傷過程とひずみ履歴
5.1 損傷過程
局部変形の発生は、鋼管、角形鋼管では、幅厚比の小さいものほど発生が遅く、焼純試験体はアズロール試験体と比べて発生が早い傾向にある。ないし、遊離室素の含有量による発生時間に相違はない。

角形鋼管のB3シリーズの全ての試験体とB4Cでは、最中に弾性局部変形がC値の0.05に止まり、試験体の変形の局部変形が進展して塑性変形を示した。これにより試験体の変形が支配されて曲げ座屈は生じていない。

曲げ座屈が生じる試験体では、載荷サイクルが増し、曲げ座屈の座屈肢が大きくなるのにしたがって、局部変形の変形も著しいものとなり、引張載荷時に制御所定変位に達しても、局部変形の破は消減しない状態になる。図9は、この状態を示したものである。

溶接後では、引張載荷時に、負曲げモーメントの増分により、最大荷重に近づくにしたがってT側に局部座屈が生じ、制御所定変位
に達した時には丁側には進展道上の局部座屈が、また、C側には消減道上の局部座屈がともに存在することになる。

溶接日でのフランジの局部座屈の曲率は比較的幅がやかである。鋼管と角形鋼管では、周方向の拘束を受けるため、厳しい局部変形を伴う破壊が生じている。この厳しい局部変形は、座屈波の周方向の頂点で生じていて、ここに将来亀裂が発生する。

鋼管の局部座屈は、若い載荷サイクルでは断面のC側中央約1/4周にこぼれが生じ、荷重サイクルの進展とともに、周方向に成長して約2周（矢印）に達した時点で収束する。このとき、矢印近傍の形状は、角形鋼管の角度とよく似た形状（「見かけの角部」）を呈している。

正載荷と負載荷で変動する局部座屈の曲率（亀裂発生箇所）の振幅の大きさは断面形状に大きく左右され、観察によると、断面はその振幅が割断面に比べて大きい。このことは、後述の図11-2(H25N),図12-2(C6N),図13-2(B6N)のひずみ振幅の大きさの相違として現れている。

亀裂の発生に先立ち、局部座屈の四部には、圧縮載荷時に複数の細かい線が発生する。この線の間隔は極めて小さい。亀裂は線の座標に生じ、写真のように多数発生する。これらの亀裂の中、1本が進展して破断に到る。

溶接日C側のフランジでは、局部座屈の振る舞い方向は断面の内側へもしくは外側へと初期変形により異なるが、変化が方向に関係なく、亀裂は、鋼管と角形鋼管と同様に局部座屈の四部の頂点近傍で生じている。なお、亀裂の発生は、鋼管および角形鋼管では図9の矢印部分から始まり、溶接IIのそれはフランジ縦端から10mmほどウェブ側に入ったところである。溶接IIでは、引張載荷時に丁側に局部座屈が生じることから、丁側フランジ管部にも亀裂が生じた。その発生位置は、局部座屈波の曲率が凸から凹に変わる位置である。

破断後の観察によると、管壁内側には全ての試験体で破断線以外の亀裂がなく、亀裂は、管壁外表面から発生することが判明した。

亀裂の発生は、局部座屈の四部には、板厚を斜めに傾切る方向で全ての試験体に共通である。その破壊は延性破壊であったが、破壊された試験体のB6NおよびB6NCでは金屬音を伴う急激な破壊が生じ、断面の一部すなわち断面に進展した亀裂の先端付近に異音面が観察された。

5.2 局所のひずみ履歴
図11から図13は、溶接H、鋼管および角形鋼管の局部座屈断面での材料方向のひずみ履歴を示したもので、いずれの断面も板厚6mmで、幅厚比区分P-Iおよび含有過渡量の区分Cである。計測箇所と区間は図10に示したとおりで標点距離は10mmである。

各断面形状でアズールル材と焼群材を比較すると、局部座屈の発生時期が異なるにもかかわらず、亀裂発生箇所のひずみ履歴は、極めてよく似た挙動を示している。亀裂の発生は、アズールル材と焼群材で同じ荷重サイクルで生じているが、亀裂の進行、破断は、焼群材の方が1ないし2サイクル早く発生している。

図11-1は、H25NのAライン（内表面）のひずみ履歴で、亀裂はこのラインのR01区間で生じている。図11-2は、H25NのAライン（外表面）を示したもので、亀裂は、L2箇所で生じている。両試験体が亀裂の発生する箇所に異なっているが、これは座屈波の変化が方向の違いによるものである。両試験体のひずみ発生箇所のひずみは、亀裂発生の進展とともに、圧縮側に偏り、亀裂は引張載荷時の引き戻しにより生じている。一方、図11-3は、H25N試験体のDラインすなわち断面の丁側の挙動を示したものである。ひずみ履歴
すみ増分が急増する区間でいる。が形成されたためである。

図12は、試験体C6ARとC6NのCラインのひずみ履歴を示したもので、亀裂はそれぞれ2箇所と4箇所で生じている。亀裂に隣接する区間のひずみ振幅は、両試験体とも極めて大きい。15サイクルでひずみ増分が急増するのは、局部座屈が進展し、上述の「見かけの局部」が形成されたためである。

図13は、試験体B6ARCおよびB6NCのひずみ履歴である。圧縮ひずみの急増は、局部座屈がフランジ内に止まらず、鋼管部が座屈した時点と一致する。なお、例として示すと、試験体B6NCの材中央から135mm離れた断面各所で計測した。4サイクルから4サイクルでの引張ひずみの増分の最大値は、3.67%であった。このことから、ひずみ増分箇所のひずみ振幅がいかに大きいかが分かる。

国12-3と図13-3は、材軸方向ひずみの管周方向分布を示したものです。断面各部のひずみは、引張載荷後にほぼ等しい値を示してい
8) 本実験は、再現性があるものと認められる。

謝辞
本研究の費用の一部は、文部省科学研究費補助金によった。また、(社)鋼材鋼管ボックス部材委員会からの支援を受けた。ここに深く謝意を表します。実験およびデータの整理には、東京理科大学工学部建築学科平成6年度卒業研究、土屋勲君、近藤邦之君のご助力を頂いた。記して謝意を表します。

参考文献
1) 日本建築学会近隣支部鉄骨構造部会：1995年兵庫県南部地震鉄骨構造物被害調査報告書、PP.75，1995
2) 加藤裕、田川則久、松本茂一、野田秀幸：— 日本共同大型耐震実験研究（鉄骨造）13— 合成梁付き実大1層骨組実験（その1）実験概要、日本建築学会大会学術講演質疑雑談（関東）、pp.1197—1198、昭和58年9月
3) 西山功、山内泰之、締光正、遠藤毅：— 日本共同大型耐震実験研究（鉄骨造）18— K形変形材付き鉄骨造実大6層骨組の耐震実験（その2）現地変形性・測定結果、日本建築学会大会学術講演質疑雑談（関東）、pp.1433—1434、昭和59年10月
4) 岩井哲、加藤誠、山本良一、なつもと：山形鋼材部材の疲労破壊実験、日本建築学会構造系論文集、第445号、PPI39—PPI49、1983.3
5) Vitelmo W.Bertero, Egor P. Popov : Effect of Large Alternating Strains of Steel Beams, Journal of the Structural Division、ASCE、ST5 1.1—1965.2
6) 辻文三、西野孝仁、他：一梁筋かたい材の破壊性変形及び焼断性状に関する研究(1)～(5)、日本建築学会大会学術講演質疑雑談、昭和58年(北陸)～昭和63年(関東)
7) 辻文三、西野孝仁、島田康：鋼管鋼材変形材の破壊性変形及び焼断性状に関する研究(その1)、日本建築学会大会学術講演質疑雑談（関東）、pp.799—790、昭和59年10月
辻文三、西野孝仁、島田康：同上(その2)、同上(関東)、pp.1021～1022、昭和63年10月
8) 6の文献の(5)：鉄骨変形筋通過、日本建築学会大会学術講演質疑雑談（関東）、pp.787—788、昭和62年10月
9) 穴積義雄、保野昭宏、花井孝朗、牧野行伸、平野道雄：梁送し力を受けける鋼構造物の座屈変形性状に関する研究、日本建築学会構造系論文集、第460号、pp.135—144、1994.12
10) 花井孝朗、穴積義雄、牧野行伸、坂井誠、平野道雄：鋼部材の座屈後破断に関する研究 その4、その5 日本建築学会大会学術講演質疑雑談(関東)、構造Ⅲ、pp.1349～1532、1994.9
11) 牧野行伸、穴積義雄、坂井誠、平野道雄：鋼部材の変形性状および座屈後破断に関する実験研究 その1、その2、その3 日本建築学会大会学術講演質疑雑談(関東)、構造Ⅲ、pp.379～384、1995.8
12) 日本建築学会：鋼構造耐震状態設計規則(案)・同解説、1990.2
13) 日本金価規則編：金価規則、改定版、P528、1990