仕上げ材を施すコンクリート床スラブの含水率、細孔構造

MOISTURE CONTENT AND POROSITY OF SUBSTRATE CONCRETE FLOOR SLABS FOR FINISHING MATERIALS

湯浅 昇*, 笠井 芳夫**, 松井 勇**, 逸見 義男***, 佐藤 弘和****

Noboru YUASA, Yoshio KASAI, Isamu MATSUI, Yoshio HENMI and Hirokazu SATOH

1. はじめに

構造コンクリートは、乾燥を受けるとコンクリート表面層から含水率が低下する。若材齢で乾燥を受ければ、セメントの水和は阻害され、表面層のコンクリートは、微細構造を保つまま残存する。打設直後から乾燥を受けることの多い床スラブ（以下ここでは単にスラブと表す）は、他の部材に比べ、この現象が顕著に生じるよう予想される。また、このコンクリートに仕上げ材を施工すると、表面からの乾燥が緩慢となるか、または停止する。これに伴い、コンクリート内部に水（水蒸気）の再拡散（再分配）が起こり、再び水和が進行することを考慮する。

コンクリートスラブに施した防湿層や各種材にみられる剥離、ふくれ、変質等の劣化現象は、コンクリートスラブの品質と深いかわり合いがあると考えられており、4,5)。スラブの品質を工学的に理解することは重要である。しかしながらコンクリートの含水率測定の事例は6) - 10) は少なからずとの、コンクリートスラブの品質は十分理解されていないのが現状である。コンクリートスラブは、他の部材とともに構造上及び、耐久性の観点から、JASSによって初期湿潤養生が規定11)されていている。一方、仕上げ材の下地としてJASS12)、合成高分子系床仕上げ施工指針・同解説13)及びJASS26)では、コンクリートは「十分に乾燥していること」が要求されている。これらの規定の中では、湿潤養生の必要性は明示されないが、ややオーバーシュートするコンクリート表面を乾燥することに重点が置かれることができるのが現状である。

そこで本研究は、仕上げ材を施すコンクリートスラブについて、構造体及び仕上げ材の下地としての両面からコンクリートの含水率、細孔構造を観察し、仕上げ材を施工するコンクリートスラブの適正な養生の指針を得ようとするものである。コンクリートの含水率は、仕上げ材を施工する打設面からの深さに応じて、あらかじめ筆者らが開発したセラミックセンサ14)を埋め込み測定した。また、細孔構造は、打設面からの深さに応じてコンクリート試料を採取し、これを用いて水銀圧入法により測定した。

2. 打設直後より乾燥を受け、その後不透湿仕上げ材を施工したコンクリートスラブの含水率、細孔構造の変化

ここでは打設直後より乾燥を受けコンクリートの含水率及び細孔構造の時変変化について検討する。

2.1 実験概要

(1) 試験体の作製

a. コンクリート及び乾燥条件

M社製普通ポルトランドセメント（比重3.16）、大井川水系川砂
（表乾比重2.82、粗粒率2.83）、大井川水系川砂利（表乾比重2.86、粗粒率2.96）及びN社製AE減水剤を使用し、表-1に示す調合によりコンクリートを練り混ぜた。このコンクリートを用いて図-1に示すスラブを想定した含水率測定用試験体（$15 \times 15 \times 50$cm）と、細孔構造の測定用試験体B（10×15 cm）の2種類の試験体を作製した。試験体の打設後は20℃、R.H.60％の恒温恒湿室で保持し、打設直後より打設面を同室の空気中に開放し乾燥させた。なお、この打設面を打設後適切な時間（実験条件ではおおよそ5～6時間）で全面にて押さえした。

b. 仕上げ材

仕上げ材として、不透湿性のA社製エポキシ樹脂系塗床材を用いた。これを材齢1、3（水セメント比60％のみ設定）、7、14、28日においてそれぞれ塗床材2.0kg/n²を打設後塗布した。(2) 試験項目及び試験方法

a. コンクリートの含水率測定方法

ここではいうコンクリートの含水率は、コンクリートを105℃で恒量となるまで乾燥させた時、蒸発して失われる量を含水率とし、これを105℃の乾燥で恒量となったコンクリートの質量で除した質量含水率を指す。ただここでは、コンクリートに埋め込んだ場合に、その電気抵抗とコンクリートの質量含水率の関係が明らかとなっているセラミックセンサー（10×5mm）を埋め込み、実験の電気抵抗から質量含水率を非破壊で間接的に求めた。このセンサー及び測定方法の詳細、精度については、文献19）を参照されたい。

ここでは、このメソッドを試験体Aにおいて、塗床施工面から$0.5, 1.5, 2.5, 5.0, 7.5, 10.0, 13.5$cmの深さに埋め込み、含水率を測定した。

b. コンクリートの細孔構造の測定

細孔構造測定用試料は、塗床施工時（材齢1、3、7、14、28日）及び、塗床施工後コンクリート材齢36日（各塗床施工材齢及び無乾燥の試験体）に試験体Bの乾燥面から深さ$0～1$cm部分、水セメント比60％の試験体では更に$2～3$cm、$4～5$cm、$14～15$cmの部分を切り出し、$2.5～5.0$mmの粒度に調整した。次にアセトンを用いて水和を停止させ、最後にD-dry処理を行って試料を作製した。
図-3 (1) 仕上げ材施工が含水率分布に及ぼす影響 (W/C=40%)

図-3 (2) 仕上げ材施工が含水率分布に及ぼす影響 (W/C=60%)

ト部分の細孔（有効細孔量V_ep（cc/g））として整理した。

有効細孔量V_ep = \frac{試料の細孔量V_mp}{溶解率WRs}
図-3 (3) 仕上げ材施工が含水率分布に及ぼす影響（W/C＝80%）

図-4 乾燥を受けたコンクリートの細孔径分布の深さ方向の相違（W/C＝60%；材齢56日）

化を示したものである。表層ほど含水率の低下は早く、表層0.5cmの含水率（口印）は材齢7日で0.0～3.6％、材齢14日以降は水セメント比にかかわらず2.5％前後に収束した。表層の含水率が著しく低下するのは材齢11日程度までであることがわかる。一方1.5cm部分（○印）、2.5cm部分（△印）の含水率は、材齢56日までならかな減少している。また、7.5cm以上の深さ（△、□印）ではおおよそ材齢5日以降は大きな変化がみられず、水セメント比40％で5.5％、水セメント比60％で5.8％、水セメント比80％で6.2％前後を示している。これらの深さでは乾燥の影響が極めて小さいことがわかる。また、全体的に水セメント比が小さいほど、若干含水率の低下が早くかつ含水率は小さい。これはセメントの水和による自己乾燥のためと考えられる。
図-5 仕上げ材施工時の材齢56日における表層0〜1cm部分の細孔径分布

b. 乾燥過程及び仕上げ材施工後の含水率分布の変化

図-3(1)〜(3)は、表面からの深さと質量含水率の関係を水セメント比及び仕上げ材施工材齢ごとに示したものである。乾燥過程、すなわち仕上げ材施工前までは、打設面に近いほど含水率は低い傾向にあり、表層から2.5cmまでの含水率の低下が著しい。乾燥途中で不透湿材料を施工した場合、含水率の低下はみられず、仕上げ材施工直前の含水状態を保持している。しかしながら、若材齢で仕上げ材を施工した場合、更に若干の含水率の低下がみられる。これは、水セメント比が小さいほど顕著であり、前述の通りこのセメントは水に結合をとるための水和反応が長時間にわたり進行する。乾燥途中で不透湿材料を施工すると、施工面に近いほど時間の経過とともに含水率が若干上昇し、コンクリート内部の含水率は、均一化する傾向にある。これらの含水率の回復は水セメント比が大きいものほど大きい。

(2) 細孔構造
a. 仕上げ材施工材齢2と細孔径分布の深さ方向の不均質性

図-4は、水セメント比60％の試験体について、不透湿性仕上げ材の施工材齢ごとに、細孔径分布の打設面からの深さ方向の不均質性を示したものである。コンクリート材齢56日である。仕上げ材施工材齢1日の試験体は、他の試験体に比し、深さ方向の細孔径分布の相違が小さく、320A以下の細孔が多く、320A以上の細孔が少ない。筆者ら行った研究では、水和が十分行われた場合、320A以下の細孔がほとんどで、水和が不十分な場合に320A以上の細孔が多くみられることが明らかにしている。これらの研究成果を踏まえると、仕上げ材施工材齢1日の試験体は、打設直後より封土状態にある試験体に比べれば、320A以上の細孔もみられるものの、図-3で示したように高い含水状態を維持できたため水和が進んだも
のと理解できる。材齢3日以降に仕上げ材を施工したものは、その含水率分布に対応するように、打設後に僅かほど水和が進み、大
きな値の細孔が多くみられ、表層と内部の不均質性は大きい。
b. 仕上げ材施工後の細孔構造の変化
図-5は、打設面から0～1cmの表層部について水セメント比及し
仕上げ材施工材齢ごとに、仕上げ材施工時（実線）、と材齢56日
（点線）における細孔半径分布を示したものである。いずれの水セメン
ト比においても材齢1日で仕上げを施工した場合、材齢56日まで
に水和に伴う細孔構造の緻密化がみられるが、仕上げ材の施工時期
の遅れに伴い両者の差は僅かなものとなる。材齢3日で仕上げ材を
施工しても、細孔構造の緻密化がありみられることから、材齢
3日までの若材齢において、湿潤養生（含む封かん養生）を怠った
場合、その後のコンクリート表面の水和及びそれに伴う強度発現、
細孔構造の緻密化があまり期待できないことがわかる。
更に、材齢14日以降に仕上げ材を施工した場合、仕上げ材施工時
の細孔半径分布と材齢56日における細孔半径分布に違わられず、水
和が阻害された時にみられる320μm以上の大きな値の細孔がそのま
ま残存することがわかる。また、仕上げ材を14日（図d）、及び28
日（図f）に施工した試験体と56日間乾燥を受け続けた試験体の細
孔半径分布（図f）に差はみられず、打設後より14日間乾燥を受
けると、その後仕上げ材の施工等により密閉されてても、細孔構
造の緻密化はほとんどみられないことがわかる。

3. 打設後初期の湿潤養生（封かん養生）がコンクリートスラブの
品質に及ぼす影響
前章2では打設後直後から乾燥を受けたコンクリートスラブの水
和率と細孔構造を検討した。ここでは、コンクリート打設初期の湿潤
養生がコンクリートスラブの含水率、細孔構造に及ぼす影響を検討
する。なおここでは、JASS5に「透水性の小さいせき板で保護
されている場合は、湿潤養生と考えてよい。」とあることから、湿
潤養生は、透水性の小さいビニールシートによる封かん養生を含む。
3.1 実験の概要
(1) 試験体の作製及び養生方法
コンクリートの材料、配合、試験体の形状は、前章2.1の通りで
ある。ただし、水セメント比は60％のみとした。コンクリートは、
打設直後より20℃、R.H.60％で養生し、打設面を適切な時間（本実
験条件ではおおよそ5～6時間）に金ごし仕上げを行った。金ごし
押さえ終了後、試験体の打設面を透湿性の小さいビニールシートで覆
い、材齢1、7、14、28日まで封かん養生を行った。その後20℃、
R.H.60％の恒温恒湿室内で乾燥させた。
(2) 試験方法
含水率の測定方法、細孔構造の測定方法は、前項2.1と同様に行
った。ただし、含水率は表層0.5cm部分を、細孔構造は表層1cmま
でを対象とした。
3.2 実験結果及び考察
(1) 表層含水率の経時変化
図-6に、コンクリートの材齢と表層0.5cm部分の含水率の関係を
示す。コンクリートの湿潤養生を長く行うほど、その後の乾燥によ
る含水率の低下が進む傾向が見られる。また、7日間以上湿潤
養生を行った試験体は、材齢200日を経過しても含水率は4％程度
であり、これ以上含水率を低くする事は難しいものと思われる。
これは、打設後の湿潤養生が水和を進めるさせ、大きい値の細孔を
減少させる一方、小さい値の細孔を増加させ総細孔量を小さくする
（図-7参照）ので、長期間湿潤養生を行った試験体は、若材齢より
乾燥させた試験体に比し、①水分膨張量が小さく、②乾燥環境の湿
満度と平衡なコンクリート含水率が増加したためと推察される。
(2) 表層の細孔構造
図-7は、乾燥開始時の表層0～1cm部分の細孔径分布を示した。
乾燥開始材齢が0日（試料採取材齢1日）及び1日と、7日以
降の試験体の間には、細孔径分布に大きな差がみられる。前者の試
験体は、後者の試験体に比し、320μm以上、10μm以下以下の細孔が多く、
320μm以下の細孔は少ない。これら両者の相違は、前述した
如く湿潤養生による水和程度の差と理解できる。筆者ら行った研
究1)及び2.2項で示してきたように、乾燥の開始とともに、細孔構造
の緻密化は遅くなるので、本結果は、コンクリートスラブの水和及
び細孔構造の緻密化に、いかに初期湿潤養生が大切であるかを示し
たものといえるよう。
４．まとめ
コンクリート床スラブについて、①打設直後から乾燥させた場合、②途中で仕上げ材を施しした場合、③打設初期に湿潤養生を行った場合の含水率、細孔構造の試験結果を示し、仕上げ材を施すコンクリート床スラブの適正な養生の指針を検討した結果を以下に示す。
(1) コンクリートの乾燥に伴い、特に打設面から2.5cmまでの含水率の低下が著しい。打設直後より乾燥を受ける場合打設面から0.5cm部分の含水率は、14日以降およびそれ25日以降である。一方、7.5cmより深い部分は、あまり乾燥の影響を受けて、乾燥による自己乾燥が落ち着く5日以降で6%前後の含水率となり変化しない。
(2) 乾燥途中に不透湿性材料を施工した場合、コンクリートの含水率の低下は顕著となり、打設面に近いほど時間の経過とともに含水率が若干回復し、含水率は均一化する傾向にある。
(3) 打設直後から乾燥を受ける、材令1日で仕上げ材を施塗する場合には、コンクリートの細孔構造の繊密化が抑制されると、材令3日以降に仕上げ材を施す場合は、その後の細孔構造の繊密化が期待できず、水和が不十分な時にみられる大きな細孔が残る。また、材令14日まで乾燥を受けると、その後密閉養生しても表層部の細孔構造はほとんど変化しない。
(4) コンクリートは、打設直後に湿潤養生を行う場合、その期間が長くなるとその後の乾燥による含水率の低下は増大し、さびた。湿潤養生に伴う水分の進行により、細孔構造が繊密化し、水分の蒸発が困難になったこと、乾燥度温度に対するコンクリートの平衡含水量が増加したものと理解する。
(5) 強度、耐久性の観点から構体コンクリートに要求されるセメントの水和と、適正な仕上げ材の下地を確保するために、打設直後における湿潤養生を行い、その後乾燥させることが必要である。本実験条件の範囲では、その必要性湿潤養生期間は36ヶ月材令7日である。

謝辞
なお、本研究の一部は、平成6年度文部省科学研究費（一般研究（C））代表間部里方）の交付を受けて行ったものである。記して謝意を表する。

参考文献
1) 渕辺昇、笠井芳夫、松木伸：表層コンクリートの品質の評価（乾燥による表層コンクリートの細孔構造の経時変化）、日本建築学会大会学術講演概要集A、pp. 199-200、1994
2) 渕辺昇、堤田良治、橋田浩：屋根防水層のふくれ圧力に関する研究（下地コンクリートおよび実験環境のふくれ圧力への影響）、日本建築学会大会学術講演概要集A、pp. 5-6、1988年
3) 関藤茂、茂呂昌生、小野正、近藤豊：若材令コンクリートスラブの防水施工実験（その4実施工試験の結果）、日本建築学会大会学術講演概要集A、pp. 5-6、1992年
4) 松原宏、長谷川、益松秀樹、野口康英：壁面防水材料の接着性状に及ぼす仕上げ材下地としてのコンクリートの含水状態の影響に関する研究、日本建築学会大会学術講演概要集A、pp. 129-130、1994年
5) 堤田昇、松本勇、近藤義男、佐藤弘和：仕上材のぼかされた下地コンクリートの含水率、細孔構造の影響、日本建築学会工学部講演工学論文報告集第18巻 第1号、pp. 573-578、1996年
6) 田中英之、内田昌宏、高野健、橋田浩、浅上昇：乾燥りのふくれ発生機構の一考察、日本建築学会構造学会論文集、pp. 350-351、1996年
7) 田中英之、内田昌宏、高野健、Keisun BAE：乾燥りのふくれ発生に及ぼす下地コンクリートの影響、日本建築学会構造学会論文集、No. 534、pp. 1-7、1997年
8) 丸一隆雄：プラスチック基材の接着に及ぼす下地水分の影響、日本建築学会論文報告集、No. 49、pp. 1-7、1981年
9) 平井和喜、中村隆史、田中昭夫、野村幸信：コンクリート仕上用エポキシ樹脂塗装の付着性に関する実験研究（その1未乾燥コンクリート面の塗装の付着性）、日本建築学会工学部講演概要集A、pp. 637-638、1986年
10) 田邊雅幸、松田裕治、塗装基材に関する下地コンクリート含水の測定、日本建築学会学会講演概要集（構造系）、pp. 117-118、1976年
11) 橋田浩、田中英之、小池進：打設直後から乾燥途上におけるコンクリートの含水状態（仕上材下地としてのコンクリートの含水状態の検討その1）、日本建築学会構造学会論文集、No. 412、pp. 1-8、1990年
12) 中山真、佐々木正治：床スラブに含まれた水分の挙動、日本建築学会大会学術講演概要集A（その1、その2、pp. 259-262、1991年、その3、pp. 3-4、1992年）
13) 関藤茂、小野正、近藤豊：若材令コンクリートスラブの防水施工実験（その3下地水分の測定結果）、日本建築学会大会学術講演概要集A、pp. 281-282、1991年
14) 渕辺昇、田中英之、原良輝、橋田浩：仕上げ材を対象としたコンクリートの含水状態及び細孔構造、コンクリート工学年次論文報告集、Vol. 16、No. 1、pp. 675-680、1990年
15) 日本建築学会：建築工事標準仕様書・同解説JASS 5・鉄筋コンクリート工事、pp. 25-26、251-256、1997年
16) 日本建築学会：建築工事標準仕様書・同解説JASS 5・防水工事、pp. 2-4、pp. 55-66、1993年
17) 日本建築学会：合成高分子系床仕上げ施工指針・同解説、pp. 13、pp. 169-176、1989年
18) 日本建築学会：建築工事標準仕様書・同解説JASS 26建築工事、pp. 71、1991年
19) 渕辺昇、笠井芳夫、松木伸：塗膜にみみ Rifformiセラミックセンサの電気的特性によるコンクリートの含水率測定方法の提案、日本建築学会構造学会論文集、No. 498、pp. 13-20、1997年
20) 渕辺昇、笠井芳夫、松木伸：表層コンクリートの品質の検討（乾燥に伴う含水率分布と細孔構造の変化）、日本建築学会大会学術講演概要集A、pp. 449-450、1983年
21) 近藤進一編著：多孔素材、技術情報出版、pp. 47、1973年
22) 佐藤弘和、浅上昇、八田義男、松木伸、笠井芳夫：仕上材を塗下地コンクリートの品質、日本建築学会学会学術講演概要集A-1、pp. 1391-1392、1995年

（1997年7月10日原稿受理、1997年9月10日採用決定）