MOMENT-ROTATION BEHAVIOUR OF SEMIRIGID CONNECTIONS WITH ANGLES

Yoshinobu TANUMA and Kenichi HASHIMOTO

In recent years, the moment-rotation response of semirigid beam-to-column connections has been investigated. In this paper, the monotonic and cyclic test results for various types of semirigid beam-to-column connections with angles are reported. The type of connections are as follows, 1) top and seat angle connections with equal size angles, 2) top and seat angle connections with unequal size angles, 3) double frictioned top and seat angle connections, 4) top and seat angle connections with double web angle connections. The analytical results considering the stiffened effect of top and seat angle for the initial connection stiffness, the yield and maximum strength of connections yielded a good correlation with test results.

Keywords: semirigid connections, initial connection stiffness, stiffened angle, yield strength, maximum strength

半剛接合部、初期剛性、補剛アングル、降伏耐力、最大耐力

1. はじめに

半刚接合部に用いられるアングルを用いた接合金の設計は、特に柱の接合部において重要である。この接合部の性能は、柱の断面形状や接合部の形状、材質などによって大きく影響される。この研究では、アングル接合部の性能を検討するために、実験と解析を用いて検討を行った。

Keywords: semirigid connections, initial connection stiffness, stiffened angle, yield strength, maximum strength
2. 実験概要

2.1 試験体

試験体は、Fig.1に示す4つの結合形式を対象とした。即ち、1) トングアングルとシートアングルから成る接合体で両アングルのサイズおよび接合詳細が同一のもの、2) トングアングルとシートアングルのサイズおよび接合詳細が異なるもの、3) トリフランジが全面被接合になるようにアングルを配置した接合体、4) トングアングル、シートアングルおよびウェブアングルから成る接合体である。各接合形式に関して、高力ボルト接合を用いた場合に、研究結果が少ないトングアングルとシートアングルをリップ補強した場合についての実験を行い、Fig.2に示すように、無補強（Fig.2中A）のほかに、アングルの側面の脚のみにリップをスム肉溶接した場合（補強形式B）、アングルの両側にリップをスム肉溶接した場合（補強形式C）について、実験を行った。

高力ボルトの列数は、接合形式1、2)は1列とし、接合形式3、4)は2列とした。なお、接合形式1、2)については、トングアングルの引張性状と柱および接合部の曲げ性状との対応関係を調べる目的で、曲げ試験で用いたアングルと同一材のアングルの引張試験を行った。引張試験の各試験体の寸法をTable1に、曲げ試験の各試験体の寸法をTable2に示す。試験体として使用した鋼材は、SS400材で、トングアングルとシートアングルは、全て耐熱型材で、接合形式3)の柱の裏側に配置したアングルとウェブアングルは、不等厚型材である。治具部は、SM490材である。高力ボルトは、F10Tを使用し、ボルトの締付けは、ナット回転法により行い、各部面面は、グリットプラスト処理とし、ボルト径を、軸径×2mmとした。各鋼材の機械的性質をTab.1に示す。

![Connection Type1](connection1.png)

![Connection Type2](connection2.png)

![Connection Type3](connection3.png)

![Connection Type4](connection4.png)

（Test Set-up）

2.2 加力方法および変形計測方法

試験体の加力は、Fig.1に概要を示すように、接合形式1)は3点曲げ形式の載荷を行い、他の試験体では片持ちばり形式の載荷とした。強度載荷は、変位制御とし、処女載荷時のひずみ発生角あるいは、よりたわみに関して、同一接合詳細を持つ試験体の単調載荷実験での当該変位の降伏変位の1/2のどちらか早く達した方の変位を基準として、降伏変位の1/2, 1倍を各1サイクル行った後、接合形式1)，2)については、アングルまたは、リップの取り付け溶接部が破断するまでは、変位変数の整数値を各2サイクル、接合形式3)，4)については、同様に、最大力値まで各1サイクル増変位繰り返し載荷を行った。

変形測定は、Fig.3に示すように、ダイアフラム中央部からはりフランジの伸び縮み量を測定し、その相対変位差から、はり端部回転角を求め、このほかに、はりたわみを測定した。

2.3 実験結果

2.3.1 引張試験結果

引張試験の実験結果をTable1に、引張試験の荷重(P)変形(δ)曲線をFig.4に示す。Table1, Fig.4から、引張試験の性状を見ると、リップのないアングルと片側の脚のみに溶接したアングル（補強形式B）の差はほとんどなく、トングアングルの性状としては、両者を同等に評価しても良いものと考えられる。リップを脚の側面に溶接したアングル（補強形式C）では、L-75X75X6シリーズの場合には、その補強効果が認められない。これは、リップの負担を伝達するアングル各脚の面外剛性の差によるものと考えられる。

<table>
<thead>
<tr>
<th>No.</th>
<th>Size of Angle</th>
<th>W</th>
<th>g</th>
<th>h</th>
<th>br</th>
<th>tr</th>
<th>Ps</th>
<th>Pm</th>
<th>δ</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L=100×100×100 A</td>
<td>200.0</td>
<td>40.2</td>
<td>70.0</td>
<td>29.5</td>
<td>205.9</td>
<td>517.8</td>
<td>54.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L=100×100×100 B</td>
<td>201.1</td>
<td>40.3</td>
<td>69.9</td>
<td>30.4</td>
<td>75.1</td>
<td>11.8</td>
<td>23.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>L=100×100×100 C</td>
<td>200.8</td>
<td>40.2</td>
<td>70.0</td>
<td>29.5</td>
<td>205.9</td>
<td>517.8</td>
<td>54.47</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Details of Specimens and Test Results for Tension Test Series
Table 2-1 Details of Specimens for Connection Type 1)

<table>
<thead>
<tr>
<th>No.</th>
<th>Size Type</th>
<th>W</th>
<th>e2</th>
<th>g</th>
<th>el</th>
<th>hu</th>
<th>br</th>
<th>tr R</th>
<th>Loading</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120x120x6</td>
<td>138.1</td>
<td>30.4</td>
<td>50.8</td>
<td>40.1</td>
<td>28.6</td>
<td>29.8</td>
<td>23.1</td>
<td>30.3</td>
<td>44.5</td>
</tr>
<tr>
<td>2</td>
<td>120x120x6</td>
<td>125.7</td>
<td>29.9</td>
<td>49.2</td>
<td>39.8</td>
<td>29.8</td>
<td>30.6</td>
<td>22.6</td>
<td>30.4</td>
<td>44.5</td>
</tr>
<tr>
<td>3</td>
<td>120x120x6</td>
<td>123.3</td>
<td>29.3</td>
<td>49.2</td>
<td>39.8</td>
<td>30.4</td>
<td>30.1</td>
<td>23.2</td>
<td>30.4</td>
<td>44.5</td>
</tr>
<tr>
<td>4</td>
<td>130x130x12(A)</td>
<td>138.4</td>
<td>30.6</td>
<td>50.4</td>
<td>40.0</td>
<td>28.6</td>
<td>29.8</td>
<td>23.1</td>
<td>30.3</td>
<td>44.5</td>
</tr>
<tr>
<td>5</td>
<td>130x130x12(B)</td>
<td>138.4</td>
<td>30.6</td>
<td>50.4</td>
<td>40.0</td>
<td>28.6</td>
<td>29.8</td>
<td>23.1</td>
<td>30.3</td>
<td>44.5</td>
</tr>
<tr>
<td>6</td>
<td>130x130x12(C)</td>
<td>138.4</td>
<td>30.6</td>
<td>50.4</td>
<td>40.0</td>
<td>28.6</td>
<td>29.8</td>
<td>23.1</td>
<td>30.3</td>
<td>44.5</td>
</tr>
<tr>
<td>7</td>
<td>130x130x12(D)</td>
<td>138.4</td>
<td>30.6</td>
<td>50.4</td>
<td>40.0</td>
<td>28.6</td>
<td>29.8</td>
<td>23.1</td>
<td>30.3</td>
<td>44.5</td>
</tr>
<tr>
<td>8</td>
<td>130x130x12(E)</td>
<td>138.4</td>
<td>30.6</td>
<td>50.4</td>
<td>40.0</td>
<td>28.6</td>
<td>29.8</td>
<td>23.1</td>
<td>30.3</td>
<td>44.5</td>
</tr>
</tbody>
</table>

Table 2-2 Details of Specimens for Connection Type 2)

<table>
<thead>
<tr>
<th>No.</th>
<th>Size Type</th>
<th>W</th>
<th>e2</th>
<th>g</th>
<th>el</th>
<th>hu</th>
<th>br</th>
<th>tr R</th>
<th>Loading</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120x120x6</td>
<td>138.1</td>
<td>30.4</td>
<td>50.8</td>
<td>40.1</td>
<td>28.6</td>
<td>29.8</td>
<td>23.1</td>
<td>30.3</td>
<td>44.5</td>
</tr>
<tr>
<td>2</td>
<td>120x120x6</td>
<td>125.7</td>
<td>29.9</td>
<td>49.2</td>
<td>39.8</td>
<td>29.8</td>
<td>30.6</td>
<td>22.6</td>
<td>30.4</td>
<td>44.5</td>
</tr>
<tr>
<td>3</td>
<td>120x120x6</td>
<td>123.3</td>
<td>29.3</td>
<td>49.2</td>
<td>39.8</td>
<td>30.4</td>
<td>30.1</td>
<td>23.2</td>
<td>30.4</td>
<td>44.5</td>
</tr>
<tr>
<td>4</td>
<td>130x130x12(A)</td>
<td>138.4</td>
<td>30.6</td>
<td>50.4</td>
<td>40.0</td>
<td>28.6</td>
<td>29.8</td>
<td>23.1</td>
<td>30.3</td>
<td>44.5</td>
</tr>
<tr>
<td>5</td>
<td>130x130x12(B)</td>
<td>138.4</td>
<td>30.6</td>
<td>50.4</td>
<td>40.0</td>
<td>28.6</td>
<td>29.8</td>
<td>23.1</td>
<td>30.3</td>
<td>44.5</td>
</tr>
<tr>
<td>6</td>
<td>130x130x12(C)</td>
<td>138.4</td>
<td>30.6</td>
<td>50.4</td>
<td>40.0</td>
<td>28.6</td>
<td>29.8</td>
<td>23.1</td>
<td>30.3</td>
<td>44.5</td>
</tr>
<tr>
<td>7</td>
<td>130x130x12(D)</td>
<td>138.4</td>
<td>30.6</td>
<td>50.4</td>
<td>40.0</td>
<td>28.6</td>
<td>29.8</td>
<td>23.1</td>
<td>30.3</td>
<td>44.5</td>
</tr>
<tr>
<td>8</td>
<td>130x130x12(E)</td>
<td>138.4</td>
<td>30.6</td>
<td>50.4</td>
<td>40.0</td>
<td>28.6</td>
<td>29.8</td>
<td>23.1</td>
<td>30.3</td>
<td>44.5</td>
</tr>
</tbody>
</table>

Table 2-3 Details of Specimens for Connection Type 3)

<table>
<thead>
<tr>
<th>No.</th>
<th>Size Type</th>
<th>W</th>
<th>e2</th>
<th>g</th>
<th>el</th>
<th>hu</th>
<th>br</th>
<th>tr R</th>
<th>Loading</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120x120x6</td>
<td>138.0</td>
<td>28.5</td>
<td>50.0</td>
<td>40.2</td>
<td>34.1</td>
<td>188.9</td>
<td>64.9</td>
<td>29.6</td>
<td>30.0</td>
</tr>
<tr>
<td>2</td>
<td>120x120x6</td>
<td>136.5</td>
<td>29.8</td>
<td>50.0</td>
<td>40.0</td>
<td>34.2</td>
<td>189.2</td>
<td>64.8</td>
<td>29.9</td>
<td>30.8</td>
</tr>
<tr>
<td>3</td>
<td>120x120x6</td>
<td>136.5</td>
<td>29.8</td>
<td>50.0</td>
<td>40.0</td>
<td>34.2</td>
<td>189.2</td>
<td>64.8</td>
<td>29.9</td>
<td>30.8</td>
</tr>
<tr>
<td>4</td>
<td>120x120x6</td>
<td>136.5</td>
<td>29.8</td>
<td>50.0</td>
<td>40.0</td>
<td>34.2</td>
<td>189.2</td>
<td>64.8</td>
<td>29.9</td>
<td>30.8</td>
</tr>
<tr>
<td>5</td>
<td>120x120x6</td>
<td>136.5</td>
<td>29.8</td>
<td>50.0</td>
<td>40.0</td>
<td>34.2</td>
<td>189.2</td>
<td>64.8</td>
<td>29.9</td>
<td>30.8</td>
</tr>
</tbody>
</table>

Table 2-4 Details of Specimens for Connection Type 4)

<table>
<thead>
<tr>
<th>No.</th>
<th>Size Type</th>
<th>W</th>
<th>e2</th>
<th>g</th>
<th>el</th>
<th>hu</th>
<th>br</th>
<th>tr R</th>
<th>Loading</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120x120x6</td>
<td>138.0</td>
<td>28.5</td>
<td>50.0</td>
<td>40.2</td>
<td>34.1</td>
<td>188.9</td>
<td>64.9</td>
<td>29.6</td>
<td>30.0</td>
</tr>
<tr>
<td>2</td>
<td>120x120x6</td>
<td>138.0</td>
<td>28.5</td>
<td>50.0</td>
<td>40.2</td>
<td>34.1</td>
<td>188.9</td>
<td>64.9</td>
<td>29.6</td>
<td>30.0</td>
</tr>
<tr>
<td>3</td>
<td>120x120x6</td>
<td>136.5</td>
<td>29.8</td>
<td>50.0</td>
<td>40.0</td>
<td>34.2</td>
<td>189.2</td>
<td>64.8</td>
<td>29.9</td>
<td>30.8</td>
</tr>
<tr>
<td>4</td>
<td>120x120x6</td>
<td>136.5</td>
<td>29.8</td>
<td>50.0</td>
<td>40.0</td>
<td>34.2</td>
<td>189.2</td>
<td>64.8</td>
<td>29.9</td>
<td>30.8</td>
</tr>
<tr>
<td>5</td>
<td>120x120x6</td>
<td>136.5</td>
<td>29.8</td>
<td>50.0</td>
<td>40.0</td>
<td>34.2</td>
<td>189.2</td>
<td>64.8</td>
<td>29.9</td>
<td>30.8</td>
</tr>
</tbody>
</table>

Table 2-5 Details of Specimens for Connection Type 5)

<table>
<thead>
<tr>
<th>No.</th>
<th>Size Type</th>
<th>W</th>
<th>e2</th>
<th>g</th>
<th>el</th>
<th>hu</th>
<th>br</th>
<th>tr R</th>
<th>Loading</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120x120x6</td>
<td>138.0</td>
<td>28.5</td>
<td>50.0</td>
<td>40.2</td>
<td>34.1</td>
<td>188.9</td>
<td>64.9</td>
<td>29.6</td>
<td>30.0</td>
</tr>
<tr>
<td>2</td>
<td>120x120x6</td>
<td>138.0</td>
<td>28.5</td>
<td>50.0</td>
<td>40.2</td>
<td>34.1</td>
<td>188.9</td>
<td>64.9</td>
<td>29.6</td>
<td>30.0</td>
</tr>
<tr>
<td>3</td>
<td>120x120x6</td>
<td>138.0</td>
<td>28.5</td>
<td>50.0</td>
<td>40.2</td>
<td>34.1</td>
<td>188.9</td>
<td>64.9</td>
<td>29.6</td>
<td>30.0</td>
</tr>
<tr>
<td>4</td>
<td>120x120x6</td>
<td>138.0</td>
<td>28.5</td>
<td>50.0</td>
<td>40.2</td>
<td>34.1</td>
<td>188.9</td>
<td>64.9</td>
<td>29.6</td>
<td>30.0</td>
</tr>
<tr>
<td>5</td>
<td>120x120x6</td>
<td>138.0</td>
<td>28.5</td>
<td>50.0</td>
<td>40.2</td>
<td>34.1</td>
<td>188.9</td>
<td>64.9</td>
<td>29.6</td>
<td>30.0</td>
</tr>
</tbody>
</table>
3.2 曲げ試験結果（単調載荷実験）

曲げ試験の実験結果の一覧をTable4に示す。Table4中の破壊状況は、Fig.5に示すように、トップアングールの破壊は、端部が破壊以外では、焼け付け（4）のNo.7の試験体が柱との接合部のボルト孔周りが面外変形を伴いながら、裂けようとするものを除き、はりフランジとの接合脚部のフレッティング面での破壊が生じた。接合形式1の試験体では、例えば、上りの裏面に贴り付けたアングールの柱との接合脚の縁あき部に亀裂が生じた後に、有効幅に破壊が生じた。また、リブの厚さ3.2mmの試験体では、4りフランジが面外曲げを生じ、接合形式1（）の場合には、4りの局部曲げ（図中に示す）によって最大耐力が決定しているものが多いが、局部曲げの発生箇所は、全て、リプランズのアングール接合脚の先端近傍である。Table4中の降伏耐力の実験値（Mw）は、Fig.6に示すように、降伏軸力（0）を最大耐力の実験値（Mn）を初期剛性の実験値（E1）で除した値で定義した場合に対応した値である。なお、局部曲げが生じた試験体と溶接部が破壊した試験体については、接合部が破壊した試験体の降伏耐力時の接合剛性の平均値等を殆ど求めることに至った。Fig.7に、曲げ試験におけるモーメントを含む全変形モーメントで無軸要素化したモーメント（a）-曲げ（0）曲線を示す。ここで、モーメントは、はり端（柱フェース）位置での値である。引張試験と曲げ試験の破壊状況が異なるものがあるが、Fig.8に、引張試験と曲げ試験との比較に関して、最大耐力と最大耐力時の変位量について示す。図中、引張試験の最大耐力の換算値のP=4×jトップアングールとトップアングールの接合間隔および部位整理アングールではj=ht/2+ts/2（htはひびれ、t：トップアングールの板厚、ts：トップアングールの板厚）、補削形式（B）、（C）の場合には、j=ht/2+t/2

+ts/hr（hr：ひびれ）とし、最大耐力時の変位量の換算値O=δから変位hとh/nととしている。図より、接合形式1の場合には、両者とも引張試験と曲げ試験の対応はよく、トップアングールの挙動によって接合部の挙動が決まっていると考えられる。接合形式2の場合においても、概ね、同様な傾向があるが、接合形式3についても、ほぼ同様である。以上のことを考慮して、モーメントの換算値は、実験の形状範囲のリブでは、その差の1/2を考慮することによって、評価できるものと考えられる。Table4から、同一トップアングールを用いた場合では、接合形式0（）と比べて、初期剛性が高い傾向にあり、初期剛性を増加させる上では、トップアングールによって、はりウェブを2面摩耗接合するよりも、はりフランジを2面摩耗接合した方が効果的である。しかし、フランジの裏面にアングールを配置することには、縁あきぎわの断面形状とボルトセットとの相対位置により、制限を受けることになる。Fig.7に示すように、接合形式0の場合には、全て局部曲げており、a-θ関係は、接合詳細の違いによらず、同様なものになっている。

3.3 繰り返し載荷実験

Table4中には、繰り返し載荷実験の実験結果の一覧を、試験体番号の後ろにLをつけて示す。Fig.8に、θ曲線を示す。本実験では、アングールの両側にリブを溶接した試験体（補削形式（C））では、全て、高力ボルトのすべての影響が大きく現れる履歴曲线となっており、アングールにリブのない試験体（補削形式（A）およびアングールの片側だけにリブを溶接した試験体（補削形式（B））では、接合形式0（）のNo.6の試験体を除いて、すべての影響が小さい安定した履歴曲线になった
ている。補剛形式(1)の場合には、リブが応力負担することによって、アンプのボルト孔周辺の破壊化が抑えられ、ポルト軸力の減少が他の補剛形式に比べて、相対的に小さくなる効果と、アンプとフランジの間の圧縮力が減少する。相異なる2つの効果が考えられるが、履歴曲線の形状から、後者の影響が大きいものと考えられる。

Fig.9-1に示す、繰り返し載荷実験と同一接合型、同一材のアンプを用いた単調載荷実験の結果を示すが、繰り返し載荷実験の骨格曲線は、単調載荷実験の結果とほぼ一致している。ただし、実験の場合は、材料の材質方向の拘束がないため、繰り返し変位振幅の増加に伴い、Fig.10に示すように、はりが柱の外侧に変位する状態が蓄積され、実験結果と異なる状態になっている。この現象による影響は、アンプの剛性に依存するものと考えられるので、相対的に、はりに比べて剛性の低いアンプを用いた接合形式(1)、2)の場合には、単調載荷実験の最大耐力、最大変位時の変形量は、繰り返し載荷実験の当値を大きく上回っている。近年行われているアンプを用いた柱梁接合部に関する繰り返し載荷実験では、ほとんどが本実験と同様な実験方法が採用されており、程度の差こそあれ、本実験と同様な傾向にある。また、曲げを主荷重として、はりの荷重を完全に拘束した実験では、単調載荷実験と繰り返し載荷実験の耐力は、ほとんど変わっていない。いずれにしても、実際の骨組みの挙動に対応するよりの材質方向の拘束による影響に関する検討が今後必要であるものと考えられる。

4. 接合部の諸特性値の評価

4.1 初期剛性

アンプを用いた柱梁接合部では、シートアンプの柱との接合部は、柱フランジにより、変形が拘束されるので、トップアンプの挙動により、この種の接合部のモーメント回転角関係の挙動が支配されている。したがって、既往の研究においては、トップアンプの柱梁接合部の変形をみる目的に、剛性を求めている。

本研究では、Fig.12のモデルを採用し、Fig.11に示す接合形式(1)の無補剛アンプの変形値に対して、初期剛性の評価を行なったが、下式が得られる。

\[
K_1 = \frac{12Eh(7h+1)}{13t^3} \quad (1)
\]

ここで、\(E\)はモジュラス、\(t\)はアンプの厚み、\(h\)は柱断面の高さ、\(h_t\)は柱の高さである。

トップアンプとシートアンプのサイズが異なる場合も同様に考えることができるが、Table4に示した実験結果で、(接合形式1)と2)を比較すると、接合部の剛性がトップアンプの挙動で決まる場合には、両者の差は、\(h_t\)の比率であるが、実験結果の差は、それと関係している。これは、トップアンプとシートアンプ両者の接合が異なることも影響していると考えられる。実験値とFig.12の解析モデルの評価値との対応から、\(K_1\)を略方の値とすると、下式が得られる。

\[
K_2 = \frac{6E(h+5h_t)(h+5h_t)}{15(5h_t^2+a)} \quad (2)
\]

ここで、\(a = 5ls/1, ls = Wts/12\)で、\(ts\)はシートアンプの板厚である。リブ付きトップアンプの場合には、実験結果で述べたように、アンプの片側だけにリブを設け混溶接した場合には、初期剛性に関しては、無補剛のアンプと大きな差は見られず、(1)式によって初
接合部の耐力を評価するに当たり、Fig. 15に示す破壊機構を考える。なお、柱、はり、ポルト締部、アングルのフィレット部は、剛域と仮定している。同様にリブを溶接したアングルに関しては、Fig. 15中に示す降伏線が生じるものとして、耐力評価を行い、他の無

Table 5 Analytical Initial Connection Stiffness (ksi)

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Top Angle</th>
<th>Seat Angle</th>
<th>ksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) (B)</td>
<td>(A) (B)</td>
<td>K1</td>
<td></td>
</tr>
<tr>
<td>(A) (B)</td>
<td>(C) (K)</td>
<td>K3 + bj/h</td>
<td></td>
</tr>
<tr>
<td>(A) (B)</td>
<td>(C) (K)</td>
<td>K2</td>
<td></td>
</tr>
<tr>
<td>(A) (C)</td>
<td>(A) (K)</td>
<td>K4</td>
<td></td>
</tr>
<tr>
<td>(A) (C)</td>
<td>(C) (K)</td>
<td>K3 + bj/h</td>
<td></td>
</tr>
<tr>
<td>(A) (C)</td>
<td>(C) (K)</td>
<td>K4</td>
<td></td>
</tr>
<tr>
<td>(A) (C)</td>
<td>(C) (K)</td>
<td>K3 + bj/h</td>
<td></td>
</tr>
<tr>
<td>(A) (C)</td>
<td>(C) (K)</td>
<td>K4</td>
<td></td>
</tr>
</tbody>
</table>

4.2 耐力および変形性

接合部の耐力を評価するに当たり、Fig. 15に示す破壊機構を考える。なお、柱、はり、ポルト締部、アングルのフィレット部は、剛域と仮定している。同様にリブを溶接したアングルに関しては、Fig.

Fig. 14 Analytical Model for Initial Connection Stiffness (Connection Type(3))

Stiffened Type (A), (B)

1) Top and Seat Angle

2) Backing Angle

Stiffened Type (C)

Fig. 15 Collapse Mechanism and Analytical Equations
補効アンプルでは、はりフランジとの接合部の部材を考慮し、シートアンプルとリップが溶接されている場合には、そのリップも補効するものとして、耐力評価を行った。ウェップアンプルについては、図中に一点鉛線で示される柱側接合部に降伏線が形成されるものとし、耐力を求めた。各耐力評価式をFig. 15に示す。なお、接合形状（3）、（4）では、トッパアンプルとハリフランジ席側のアンプル、トッパアンプルとウェップアンプルの剛性比が異なるので、厳密には、その差を考慮する必要があるが、構造解析から求められる降伏耐力は、接合形状（3）の場合には、実験値と比較的良く一致しており、接合形状（4）の場合には、Table6に示すように、トッパアンプルとウェップアンプルの初期剛性の比率を考慮した耐力評価を行った。実験値（My）と評価値（CMY）の比率をTable6中に示すが、両者の対応は、良い。最大耐力に関しては、降伏耐力と同様な評価方法が考えられるが、最大耐力時には、アンプルの変形に伴う面内力（動力）による耐力の上昇を考慮する必要がある。Fig.16に示すように仮定するトッパアンプルの回転の応力変形状態に関して、SS400材を対象としたBeam-Columnに関する既往の研究を基に、構造解析のモーメント弯折に応答する各節の変形量（δc, δb）を、降伏変形量の20倍とすると、構造解析時耐力をに対応した上限率（α）として下式が得られる。

\[a = \frac{200 \delta c}{(212+\delta c)} + \frac{3\delta b}{(11-\delta b)} \] --- (13)

溶接部が破断した試験体の溶接部破断耐力は、その時のリップの補効力とアンプルの補効力の和により、接合部が証明する最大耐力（Wp）を、斜面角度45度の三角形として、下式14によって求める。

\[\text{Wp} = 1.35 \sum \Delta W \cdot \omega \cdot \frac{u}{3} \] --- (14)

ここで、\(\sum \Delta W \)は、全ての断面積、\(\omega \cdot \sigma \)は溶接金属の引張強度で、母材（アンプルとリップの平均値）と全溶接金属の平均値

リップとアンプルの補効力の比率は、溶接部の変形がアンプルの変形に比べて無視でき、リップ自体の塑性化が生じない場合には、アンプル自体の面外変形に関する剛性と曲げ変形に関する剛性の比率で近似できるものと考えられる。この比率が一定と仮定すると、（3）式の初期剛性の各成分の比率から下式が導かれる。

\[\frac{c}{h} = \frac{w}{2} \cdot (1-Ke/Kr) \cdot h \] --- (15)

最大耐力の実験値と評価値（CMa）との比較をTable6に示すが、溶接部の破断耐力は、過小評価する傾向にあるが、他の破断形式に関しては、両者の対応は良い。なお、Table6中での最大耐力の計算値において、端付け破壊の場合には、αを考慮していない。また、局部破壊で最大耐力が決まっている試験体のCMaは、はりの全塑性モーメントとし
その他の試験体では、接合形式（3）のFig.9-5に示した試験体（No.6）を除き、すべり耐力の低下度合は、0.5程度に留まっており、既往のスプライスプレート形式の実験結果と同様な結果である。接合形式（3）のNo.6の試験体の場合には、トップアングルとリフランジ間のアングルサイクルが極端に異なり、両者が一体となったすべり挙動を終局状態まで示さないことから、一部の変位はリフランジにある。また、アングルとリブを接続した試験体では、すべり区間の長さは、変位振幅の増大に伴い、ボルト孔の変形の増大に伴い、増加しており、変位振幅に上限するすべり区間の長さは一部で変わらない傾向にある。

5.2 各サイクル時の初期剛性

各サイクル中の初期剛性（Kic）の低下率は、接合形式や耐力の違いによる影響は見られず、類似した傾向を示している。Fig.19には、Kicを初期剛性（K1）で除した値（Kic/K1）とサイクル数（C）の関係を示すが、両者にはほぼ同様の関係がある。なお、ここでは、同一曲げの正負をサイクルとしている。

\[
\frac{Kic}{K1} = \frac{1}{C} \tag{18}
\]

6. 結論

アングルを用いた各種柱と接合部に関する実験を基にした考察結果から、以下のように考えられた。

1）アングルを用いた各種柱と接合部の初期剛性は、主として、トップアングルの拘束位置の影響を受け、アクセスの内の異なるシートアングルを用いる場合には、その影響を受ける。

2）初期剛性と接続耐力、アングルの接続形式やその剛性は良好に対応を示した。

3）接合部の任意の接合アングル、アングルの接合位置を考慮した設計において、モニタリング接合形式やその剛性が示す接合体と材間変形を減少させることで、高力ボルトのすべりによる影響を強く受ける。

4）接合部の変形の内、接合形式や補強形式により、柱側接合脚の接合部を主たる影響を受ける。

謝辞：本研究の一部は、（社）鋼材倶楽部平成9年度鋼構造研究助成金および文部省科学研究費補助金（基盤研究（A）No.07305025研究代表者：千葉大学高梨晃一教授）による支援を受けており、関係各位に厚くお礼申し上げます。

参考文献
1）鋼材倶楽部編：鋼構造構造接合資料集
2）安藤重至、玉置照夫：鋼構造関連の接合に関する研究資料
3）小高伸明、鈴木敏幸：鋼構造接合と梁の接合部に関する研究

(1998年2月19日原稿受理，1998年7月31日採用決定)