実測変形から見た軟弱地盤における山留め外力分布
(その2 排切いの進行に伴う外力分布)

LATERAL LOAD DISTRIBUTION ON AN EARTH RETAINING WALL FOR EXCAVATION IN SOFT GROUND, AS STUDIED FROM RECORDED DEFORMATION

（Part 2 Lateral load distribution accumulated during excavation）

風間 了*

Satoru KAZAMA

This paper continues from the previous thesis (Part 1) of the same title. It compiles the twenty seven cases of deflection of earth retaining walls as observed in soft ground, and seeks inversely for the lateral load distribution to explain the observed modes at the successive stages from the first to final excavation. It was found out that the ratio of the depth of maximum lateral load to that of excavation bottom must be taken 2～3 at the first stage of excavation. The ratio will decrease in association with the progress of excavation, reaching finally about 1.0 after the third stage.

Keywords: Excavation, Lateral load distribution, Earth retaining wall, Soft ground, Deflection

1. 引言

前文(その1)1)では、軟弱地盤における1次格切い時の、地中深くより発生する山留め壁の実测変形は、現状の山留め設計での格切い底位置を最大とする外力分布では説明できないことに着目し、その分布状態を実測変形に対する解釈と併検した。この検討方法としては、多数の山留めの事例に対して、1次格切い時の解釈変形が実測変形にほぼ合致する山留め外力分布を逆算的に求めている。

この結果、1次格切い時の外力分布を以下の知く設定すれば、軟弱地盤特有の山留め壁の実測変形を解析的に良く説明できた1)。

①外力分布：単純な三角形分布。
②外力分布の下端：軟弱層と硬質層の層境界が明確な場合には、層境界または壁先端位置に設定。軟弱層からN値が徐々に増加している場合は、N値が20～30の深さに設定。
③外力最大値深さ：格切い深さの2～3倍に設定。

そこで、本論文(その2)では、2次格切い以降の山留めの実測変形に対して、前文(その1)と同様な解析2)～3)を行い、各格切い時の山留め外力の分布状態を調査、検討した。

なお、格切いの進行に伴う山留め外力の変動に関する研究としては、多数の実測土圧に基づく実験の研究4)が存在するが、多数の実測変形から逆算的に外力分布を検討した研究は稀無に近いと言えよう。

2. 外力分布

図-1に、表層の軟弱層とそれ以深の硬質層の境界が明確な場合の、外力分布の設定方法を示した。

2次格切い以降の側圧分布も、1次格切い時の場合と同様に、三角形分布とし、また格切い深さ(H)に対する外力最大値深さ(α-H、α：任意定数)および側圧係数(k)は、各格切い段階において、解析変形が実測変形にほぼ一致するよう逆算的に設定している。

* 早稲田大学理工学部建築学科 教授・工博
Prof., Advanced Research Institute for Science and Engineering, Waseda University, Dr. Eng.
3. 山留め物等の解析方法および解析条件

本山留め物等の解析には、筆者らが提示してきたE_3 = α法(1, 2)を適用している。この解析方法では、深さ方向の地盤反力、その変形に応じた非線形性状を導入するため、地盤および山留め壁を層分
割し、またアレフ図のように、根切り底以浅の山留め壁が背面
側に押し戻された場合は、背面側の地盤反力も解析に導入している。

山留め物等解析におけるγ = 1 cm/mの地盤の基本変形係数(E_3)は、同名論文(その1)と同様に、以下のよう設定している。

< E_3 (1/t/m²) >

また、図-1における各根切り時の外力分布および側向圧係数は、
前章で述べたとおり、解析変形が実測値と一致するよう設定している。

一方、実測変形は、同名論文(その1)でも述べたとおり、同一山留
めにおいても測定結果により異なる。また、特に切り創設置後におい
て、対面位置の山留め壁の変形性状の問題となるが、必ずしも対面位置で变形がよく行われていない事例が多い。このよ
い、実際の山留め物は様々な影響を受けているが、本研究では、
文献1)と同様に、各測点を単独に取り出し、同一山留めでは各側
の壁の曲げ剛性(E1)を同一とし、解析を行っている。

4. 山留め壁の諸元

表-1に、解析を行った11事例、計27測点の山留め壁の諸元
および根切り次数等を示した。

山留め壁の変形測定は、No.1〜No.7の事例では1測点以上、またNo.8〜No.11では1測点で行われている。これらの事例の山留め壁は、No.3のソイルセメント柱列壁（SW）を除いて、鉄筋
コンクリート地中連続壁（RC）である。

山留め壁の実測変形は、傾斜計により計測されている。

5. 外力分布と変形曲線

以下の解析結果の図中には、土質柱状図、および解析に用いた山
留め壁の変形γ = 1 cm/mの基本変形係数 [E_3 (1/t/m²)]、外力分
布、側向圧係数(γ)，根切り深さによる外力最大値深さの比(α)を
示した。また、壁背側位置も一例で併記している。

5-1 全面地盤改良の事例（No.1, No.2）

図-1に、No.1およびNo.2の事例の山留め壁平面および山留め
変形の測定位置を示した。

両山留めの間が18.8mと近接しており、また両側の平面はほぼ同一である。両事例のRC山留め壁は、幅6.4m、壁長が20
mと31mの壁で構成され、また両側の壁は交互に配置され、壁
背側は単独をなしている。さらに、両事例の場合、根切り側の地盤
を山留め壁近接部ではG.L.-20m以浅を、中央部ではG.L.-16
m以浅を全面的に石灰を用いて地盤改良している。

地盤改良が行われた両事例解析では地盤改良部分のE_3値の評価
問題が発生するが、現状では地盤改良部分のE_3値の定量的な評価方法
は確立されていない。そこで、同様に、側向分布を他の事例解析結
果を参照、変化させるとともにE_3値も変化させ、解析値の変形が
実測値にほぼ合致するよう設定している。なお、背面側のE_3値は、
3章に示した値としている。このように、本事例では根切り側と壁

<table>
<thead>
<tr>
<th>事例-測点 No.</th>
<th>壁厚さ長さEI (10^6)</th>
<th>横切り次数</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-A RC 60 20.31 3.78</td>
<td>6</td>
<td>全面地盤改良</td>
<td></td>
</tr>
<tr>
<td>1-B RC 60 20.31 3.78</td>
<td>6</td>
<td>同じ</td>
<td></td>
</tr>
<tr>
<td>1-C RC 60 20.31 3.78</td>
<td>6</td>
<td>No.1, No.2:近接事例</td>
<td></td>
</tr>
<tr>
<td>1-D RC 60 20.31 3.78</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-A RC 60 20.31 3.78</td>
<td>6</td>
<td>同一地盤</td>
<td></td>
</tr>
<tr>
<td>2-B RC 60 20.31 3.78</td>
<td>6</td>
<td>1-A, B:対面</td>
<td></td>
</tr>
<tr>
<td>2-C RC 60 20.31 3.78</td>
<td>6</td>
<td>2-A, B:対面</td>
<td></td>
</tr>
<tr>
<td>2-D RC 60 20.31 3.78</td>
<td>6</td>
<td>2-C, D:対面</td>
<td></td>
</tr>
<tr>
<td>2-E RC 60 20.31 3.78</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-A SW 23 0.98</td>
<td>5</td>
<td>B〜E:部分的</td>
<td></td>
</tr>
<tr>
<td>3-B SW 23 0.98</td>
<td>5</td>
<td>地盤改良</td>
<td></td>
</tr>
<tr>
<td>3-C SW 23 0.98</td>
<td>5</td>
<td>B,C:対面</td>
<td></td>
</tr>
<tr>
<td>3-D SW 23 0.98</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-E SW 23 0.98</td>
<td>5</td>
<td>D,E:対面</td>
<td></td>
</tr>
<tr>
<td>4-A RC 80 25 8.96</td>
<td>4</td>
<td>A,B:対面</td>
<td></td>
</tr>
<tr>
<td>4-B RC 80 25 8.96</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-C RC 80 25 8.96</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-A RC 60 29 3.78</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-B RC 60 29 3.78</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-A RC 70 19 6.00</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-B RC 70 19 6.00</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-A RC 80 22.5 8.96</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-B RC 80 22.5 8.96</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 RC 80 19 8.96</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 RC 50 18 2.19</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 RC 80 26 8.96</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 RC 60 21 3.78</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図-2 No.1, No.2の山留め壁計測点

6. 計測結果と考察

本山留め物等の解析方法は、実測値と比較してその誤差は小さく、本解析方法の有効性が示されている。
図-3 No. 1, 2 変形曲線 [-: 解析値, ○: 実測値, ()内のEは壁面側]

図-4 No. 1 曲げモーメント分布 [-: 解析値, ○: 実測値, ()内のEは壁面側]
No. 1、No. 2 の事例の解析では、根切り側の、G.L ～ 20m 間の地盤改良部分の基準変形係数（E_{0j}) を、背面側の値に比較して、深さ方向に約 2 ～ 6 倍増加させてある。これらの E_{0j} 値を導入した解析結果は、各測点の各根切り段階とも、実測値の変形性状を全体的に良く説明していると言える。

根切り深さに対する外力最大値深さの比（a）は、1次根切り時では約 2.5 と与え、それ以後は根切りの進行に伴い減少させ、4次根切り以降では 1.0 で一定としている。この a の低下状態は、前項の No. 1 および No. 2 事例の場合とはほぼ対応している。

山留め変形が増大する 2次根切り以降の側圧係数について見ると、ソイルセメント柱を考慮した根切りの E_{0j} 値を増加させた山留め平面中心位置の B～E C 間での E_{0j}\text{max} は 0.7 ～ 0.95 と与えられているのに対して、従来の a 値では 0.55 ～ 0.6 と与えている。

以上、この事例においても前項の事例と同様に、実測変形には山留め平面の影響が明確に現れ、また根切り側地盤に打設したソイルセメント柱の変形抑制効果も認められると判断される。

5−2 2次以上の事例（No. 4 ～ No. 7）

圧縮（a）、(b)および(c)において、No. 4 事例の A、B、および C 目の、解析値の変形を実測値と対比してそれぞれ検討した。なお、各測点は山留め面のほぼ中央位置で、A、B 点は柱面が対比して、また C 点はそれらを直接した直後の位置に設置している。

対補性 A、B、および C 目の実測変形量は、B 点の値が各根切り段階とも A と C が最も実測値と比較して約 2 倍大きい。したがって、A と C は、各根切りの順に蓄積されて山留め面の影響があり、各根切り段階の根切り部分の変位は、ほぼ山留め側の影響を反映していると言える。

上記の No. 1 事例の場合、B の D 条件測点では山留めの応力測定が行われている。

図−4(a)、(b)および(c)の解析結果の曲げモーメント分布と実測値を対比して示した。

結果は、実測値と異なる部分もあるが、上記の変形の特徴と同様、各根切り時の変形量の分布状況を大きく良く説明している。

以上、本解釈を示した外力分布、変形曲げモーメントの面から、ほぼ実際面に即していると言える。

5−2 部分地盤改良の事例（No. 3）

圧縮（a）、(b)および(c)において、No. 3 の事例の実測値、山留め面の変形抑制のために打設されたソイルセメント柱（直径：約 60cm）の位置、および基準変形の測定位置を示した。

ソイルセメント柱柱は、根切り側に 1 方向に 1 列、それと直行する方向に 2 列、G.L ～ 1m まで打設されている。

A 点はソイルセメント柱柱位置が離れた山留め面の端部、B～E C 点は山留め面中央のソイルセメント柱柱の端部および位置している。また、B 点と C 点、それぞれ直交する方向の D 条件測点と E 点測点は対比して、その下の解析結果では、A 点の基準変形係数（E_{0j}\text{max}) はソイルセメント柱の位置を考慮していないが、B～E C 点では G.L ～ 1m 以浅（地盤改良部分）の根切り側の基準変形係数（E_{0j}\text{max}) に、前項のとのと同様に、解析結果が実測値とほぼ一致するよう設定している。なお、解析結果の図中の E_{0j}\text{max} 値の表示方法は前項の事例の場合と同様である。

図−6(a)、(b)および(c)において、A 点、B、C 点および D、E 点測点、の解析値の変形を実測値と対比してそれぞれ示した。

B～E C 点の根切り側地盤の E_{0j}\text{max} 値は、ソイルセメント柱打設の変形結果として、背面側の値の約 2 倍を採用している。このソイルセメント柱の結果は、根切り深さが浅いほど大きいかと言うと、この性状は、例えば A 点と B、C 点の変形量を比較すると、特に 1次根切り時の変形が明確に現れている。また、解析結果は、各測点の各根切り段階の実測変形の変形状況を全体的に良く説明している。

根切り深さに対する外力の変形深さの比（a）は、1次根切り時においては 0.2 を与え、それ以後は根切りの進行に伴い減少させ、4次根切り以降では 1.0 に設定している。この a の低下状態は、前項の No. 1 および No. 2 事例の場合とはほぼ対応している。

山留め変形が増大する 2次根切り以降の側圧係数について見ると、ソイルセメント柱を考慮した根切りの E_{0j}\text{max} 値を増加させた山留め平面中心位置の B～E C 間での E_{0j}\text{max} は 0.7 ～ 0.95 と与えられているのに対して、従来の a 値では 0.55 ～ 0.6 と与えている。

以上、この事例においても前項の事例と同様に、実測変形には山留め平面の影響が明確に現れ、また根切り側地盤に打設したソイルセメント柱の変形抑制効果も認められると判断される。

5−2 2次以上の事例（No. 4 ～ No. 7）

圧縮（a）、(b)および(c)において、No. 4 事例の A、B、および C 点の、解析値の変形を実測値と対比してそれぞれ検討した。なお、各測点は山留め面のほぼ中央位置で、A、B 点は柱面が対比して、また C 点はそれらを直接した方向に位置している。

対補性 A、B、および C 点の実測変形量は、B 点の値が各根切り段階とも A と C の値に比較して約 2 倍大きい。したがって、A と C は、各根切りの順に蓄積されて山留め面の影響があり、各根切り段階の根切り部分の変位は、ほぼ山留め側の影響を反映していると言える。

また、深さ方向の変形状態を支配する a の値は、1次根切り時においては何測点とも 2.0 とされているが、2次根切り以降では、他の事例と異なり、2次根切りで 1.3 ～ 1.65、3次根切りで 1.1 ～ 1.2、4次根切りで 1.05 ～ 1.0 と各測点で異なる値を与えている。このことによって、実測変形は柱を設定する傾向には、根切りの進行に伴い a 値を減少させる必要がある。

さらに、2次以上の根切りの進行において、実測変形の変形を実測値と対比してそれぞれ示した。なお、本解釈の A やおよび B 点は、柱を設定する傾向において、また No. 5 事例、A 点の 8次根切り時のデータは不明であった。

また、特に No. 6 事例の場合、6次根切り以降の側圧係数を 1次根切り時の 1/3 に低減しているが、これは実測変形が根切りの進行に伴いほとんど増加していないためである。

実測変形量は、1次～最終根切り時の場合とも、A 点の値が B
測点の約2倍の値を示しているが、両測点の変形性状は極めて良く対応している。これらの実測変形の性状は、両測点の側圧係数のみを変化させ外力の分布形を一致させることにより説明されている。

5-41測点の事例（No.8～12）
図-11〜図-14には、No.8〜No.11事例の解析値の変形を実測と対比してそれぞれ示した。

No.8、No.9およびNo.11事例では、α値を根切りの進行に伴い順次減少させ、3次根切り以降ではほぼ1.0の値に設定する必要がある。これに対し、No.10事例では、前述のNo.5およびNo.6事例の場合と同様に、2次根切り段階でα=1.0に設定している。

以上、11事例、計27測点の解析結果は、根切り深さに対する外力最大値をα値を根切りの進行に伴い減少させることにより、実測変形を説明できることが判明した。
6. 側圧係数と根切り次数

前章に示した通り、解析時の側圧係数は各事例でかなり異なりるとともに、同様に根切りの進行に伴い変動を示している事例が多い。なお、側圧係数は、山留め壁の深さ方向の変形性状を支配する外力分布(a)に対して、変形量を大きく支配する要素である。

本章では、根切りの進行に伴う側圧係数の変動性状を主眼として、考察を行っている。

図1-15(a)には、前章に示した計27測点の解析に導入した側圧係数(k)と根切り次数の関係を示した。

側圧係数の値は、各測点で大きく異っている。この原因として、①地盤状態が各事例で異なること、②各事例の変形測定位置は、例えば最大変形の発生が予測される壁一面の半分には限らず、実際変形は、平面的測定位置の影響(例えば、図-2、図-3)も含むこと、また③試料解析では、例えば同一山留めの場合、各測点の壁面の曲げ剛性を同一にしていること、等と考えられる。

なお、50事例以上の実測土圧から求めた側圧係数が文献4)に示されているが、その側圧係数は約0.2から0.8の間に分布し、概ね図1-15(a)とはほぼ対応している。

また、根切りの進行に伴う側圧係数の変動状況も各測点によりかなり異なる特性を示しているが、2次根切り以降ではある傾向が認められる。そこで、以下には、根切りの進行に伴う側圧係数の変動性状について検討した。

図1-15(b)に、各根切り時の側圧係数(k1)を1次根切り時の側圧係数(k0)で無次元化したλ1(=k1/k0)と根切り次数の関係を示した。

2次根切り時のλ1の値は、1測点の値を除いて、1次根切り時、2次根切り時の値の極大値0.8～1.5倍と、測点によりかなり異なっている。この2次根切り時のλ1のバラツキが、3次根切り以降の各測点間のλ1のバラツキにかなり影響を及ぼしていることが判る。

図1-15(c)には、各根切り段階の側圧係数(k2)を2次根切り時の側圧係数(k0)で無次元化したλ2(=k2/k0)と根切り次数の関係を示した。

2次根切り以降のλ2の変動は、根切りの進行に伴いわずかに増加する傾向もあるが、全体的には大きく変動しない傾向となり減少する傾向に大きく変化する。なお、他の測点に比べてλ1の値が、4次根切り以降で約1.6と大きな値を示している測点は、上記のλ1で述べたNo.2-E測点の値である。

なお、上記の根切り進行に伴う側圧係数の変動については、文献4)に記している。50事例以上のRC地中連続壁の実測土圧より求めた側圧係数を側圧係数(各根切り段階での根切り深さ/最終根切り深さ)を図-4に示す。これらの結果を見ると、側圧係数と側圧係数(根切り次数に対応)との関係は、図1-15と同様に、各事例でかなり異なる性状を示している。

以上、実測変形を解析的に説明するための側圧係数は、各測点で大きく異なっている。なお、山留め設計の側圧係数は、山留め壁の最大変形・応力の対象とするため、測定位置の影響等を側圧係数で評価した本の値よりも大きな側圧係数を採用する必要がある。

一方、根切りの進行に伴う側圧係数の変動性状は、1次から2次根切りの段階では各事例で大きく異なるが、切欠きが設置されたそれ以降の根切り段階では、かなり安定した性状が認められる。

7. 外力最大値深さと根切り次数

図1-16(a)に、各測点の、最大外力深さの係数(a)と根切り次数の関係を示した。

1次根切り時のa係数は、解析時の測定・山留め壁の詳細の更新にも関係14)しているが、2.0、2.5、3.0のグループに分かれる。それ以後の同係数は根切りの進行に伴い減少し、4次では1.0に収束している。

—101—
以性の切合力 最におり値35、2\(\times\)80値が如く圧同図の実測値で。各測点での根切り数は、以下の解析事例にかかる異なるが、\(\alpha\)の値は、1次根切り時には\(\alpha_1 = 2\)に設定して、2次根切り時には\(\alpha_1 = 1\)以下に低減し、3次根切り以降はほぼ1.0、すなわち最大外力減少を根切り深さに設定すれば良好と判断される。

謝辞
本研究に当たり、貴重なる実測データを快くご提供戴きました株式会社大林組・技術研究所・土質研究室、東京電力株式会社・逆変電機技術本部・建築グループおよび東京建設株式会社・生産技術本部・建築エンジニアリング部の関係各位に御礼申し上げます。

＜参考文献＞
1) 風間了 他：実測変形から見た軟弱地盤における山留め外力分布、日本建築学会構造系論文集、第514号、pp.141～148、1998.12
2) 風間了、黄竹生：実測変形から見た山留め外力分布（その1）、第32回地盤工学研究発表会講演集、pp.1719～1720、1997.7
3) 風間了、柴崎浩一郎：実測変形から見た山留め外力分布（その2）、第33回地盤工学研究発表会講演集、pp.1661～1652、1998.7
4) 宮崎祐助：実測に基づく山留め設計用外力に関する研究、日本建築学会構造系論文集、第648号、pp.59～68、1994.4
5) 宮崎祐助、風間了、村田洋悟：偏圧作用下の山留め架橋の解析事例と再解析、日本建築学会構造系論文集、第439号、pp.121～131、1992.9
6) 風間了：偏圧作用時の山留め架橋の解析方法と事例解析、建築学会山留めの設計・施工に関するシナポジム・発表論文集、pp.219～226、1998.2

（1999年6月7日最後確認、2000年1月1日採用決定）