塑性履歴を受けた鋼材の脆性破壊におけるローカルクライテリアの適用

STUDY ON BRITTLE FRACTURE OF STEEL UNDER PLASTIC STRAIN
BASED ON LOCAL FRACTURE APPROACH

中込忠男*，見波進**，白崎博史***，新井聡****
Tadao NAKAGOMI, Susumu MINAMI, Hiroshi SHIRASAKI
and Satoru ARAI

For the steel material that received cyclic plastic strain, the notched round bar tensile test and the Finite Element Method analysis were done. As a result of examination based on Local fracture approach, it was shown as follows.

The cleavage fracture stress and the Weibull stress do not so depend on the N-skeleton maximum strain as the yield stress. If the N-skeleton maximum strain increases, the ratio of the cleavage fracture stress to the size of yield surface decreases. Assuming that cleavage fracture stress is constant, because the stress-strain relationship is changed when the plastic strain increases, δc and the critical CTOD decrease. That is, the material property is deteriorated by plastic strain history.

Keyword: Plastic strain history, Local fracture criterion, N-skeleton maximum strain, Finite-Element Method analysis, Critical CTOD, Brittle fracture

1. はじめに

鋼構造建築物は地震時に材料の降伏歪よりも明らかに大きな歪を繰返しを受ける。このような塑性歪は鋼材の機械的性質や破壊現象に大きな影響を及ぼし、鋼材の材質を大きく劣化させることが一般に知られ、多くの研究がなされてきた。しかしその多くは実構造物の調査や構造材料の一端またはモデル化して研究であり、鋼材自身の特性に関する研究はいくつか行われている数少ない。そのなかで中込、音木らは単調引張荷重によって塑性歪を受けた鋼板の各種材料試験を行ない、塑性歪を受けた鋼板は繰返しに比べて脆性が大きく劣化することを報告している。さらに、中込、山田らは SM490A鋼を用いて繰返し塑性歪を受けた鋼材の各種材料試験を行ない、鋼材の材料がどの程度劣化するかを報告している。

塑性歪は鋼材の材質劣化するだけでなく、それにより応力ひずみ関係を処女材から変化させており、特に変位歪が上昇していることを考えなければならない。応力ひずみ関係は脆性破壊に関し非常に重要であり、塑性歪により脆性破壊の危険性をも高めることが予想され、構造材料物の破壊防止設計を考える上で、脆性破壊を定量的に捉えることが必要である。

2. 2. ローカルクラフターモデル

ローカルクラフターモデルには定常のモデルが提出されている。一つは破壊規準が脆性の応力値を考慮した応力応答軸を考
力が破壊範囲を越える時に発生するという考えに基づいているRKRモデルであり、もう一つは亀裂端部周辺の応力状態を体積積分したパイウェル応力を用い、それを破壊関数とし評価する破壊論のモデルである。

RKRモデルでは、亀裂破壊が応力支配型の破壊であることから、亀裂先端からXo離れた位置における亀裂先端方向応力\(\sigma_y\)が亀裂破壊範囲応力\(\sigma_c\)を超えた時に、破壊が発生するとしており、破壊条件は以下のよう与えられる。

\[
\sigma_{yy} \geq \sigma_c
\] (1)

一方、亀裂破壊は応力支配の破壊であり、パイウェル型の応力リグ概念に従う挙動を示すとされていることから、亀裂破壊に関しては、ばらつきも考慮して破壊発生を捉えるのが確率論モデルである。

亀裂破壊に関連する付着の因子に関して統計的に独立な最小重量を\(v_0\)とすると、応力\(\sigma_y\)が作用すると、応力状態を次のようにパイウェル分布となる。

\[
F(\sigma) = 1 - \exp \left(- \int_0^{\sigma} \frac{\sigma_y}{\sigma_0} \frac{m}{v_0} d\sigma \right) = 1 - \exp \left(- \frac{\sigma}{\sigma_0} \right) \] (2)

ここで、\(m\)はパイウェル形状係数、\(\sigma_0\)はパイウェル尺度係数である。式(2)中的\(\sigma_0\)が確率論的な寸法効果を考慮した一般性のあるべき開破壊応力というより、一般にパイウェル応力と呼ばれており、ある破壊確率に対する期待値として\(\sigma_c\)を捉えることができる。

式(1)における破壊範囲応力\(\sigma_c\)及び、式(2)におけるパイウェル応力\(\sigma_0\)を求めるには、円周切欠付丸棒試験片の引張試験を行ない、鋼材への亀裂破壊発生時の荷重を得て、次に有限要素解析により破壊発生荷重時の切欠き周辺の応力状態を求め、\(\sigma_c\)、\(\sigma_0\)を算出する。

3. 円周切欠付丸棒引張試験
3.1 引張試験概要

供試鋼材は建築用鋼材として広く用いられているSM490A鋼とし、既報と同じである。ミルシート値による機械的性質を表1に、化学成分を表2にそれぞれ示す。

試験片は、四点曲げ荷重形式で載荷した溶接打継ぎH形断面試験体のフランジより採取した。塑性歪履歴としては、単純載荷塑性歪と正負交番繰返し載荷塑性歪とした。繰返し載荷四点曲げ試験の詳細は文献2を参照されたい。

試験片を用意し、塑性歪履歴形式と関係を表3に示す。ここに、塑性歪を与えた四点曲げ試験片として第1グループで圧縮載荷を受けた芙蓉型フランジより採取した試験片を圧縮試験片、引張載荷を受けたフラージャより採取した試験片を引張試験片とした。引張試験片は最終履歴が引張もあり一様歪形に近い応力ひずみ関係となるのに対して、圧縮試験片は最終履歴が圧縮でありラウンドハウス型の応力ひずみ関係になる。(図3参照)

試験片の切欠き底の曲率半径はより脆性破壊を起こしやすいようにに\(r=0.2\, \text{mm}\)、最小断面の直径は\(6\, \text{mm}\)とした。試験片形状を図1に示す。

試験温度は、試験片が延性破壊の影響を極力排除して、脆性破壊を起こさせるように低温で行った。低温の設定温度は液体窒素を使用して\(-196\, ^\circ\text{C}\)とした。低温状態を冷却開始から30分間保持し、その後載荷を行い、載荷中も冷却を続けた。

荷重は100kNオートグラフを用いてクロスヘッド位置変位計で行った。荷重はオートグラフの出力をデジタルオーガーで収録し、変位の測定は標点間距離20mmとしてクリップゲージにより測定した。変位速度は0.5mm/分で行った。

3.2 引張試験結果

試験結果を表4に示す。A~R材は3本、V材は2本の平均である。破壊性状は、すべての試験片において荷重上昇中の全断面脆性破壊による破断であった。

表1 供試鋼材の機械的性質

<table>
<thead>
<tr>
<th>載荷試験</th>
<th>荷重試験 (20℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>変形点</td>
<td>引張荷重</td>
</tr>
<tr>
<td>(N/mm²)</td>
<td>(N/mm²)</td>
</tr>
<tr>
<td>368</td>
<td>511</td>
</tr>
</tbody>
</table>

表2 供試鋼材の化学成分

<table>
<thead>
<tr>
<th>化学成分 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>
4. 弾塑性有限要素法解析
4.1 解析概要
円周切欠き付丸棒試験片に対し、弾塑性有限要素法解析を行ない、
RKRモデルにおける破壊限界応力σ_{cr}及び塑性理論モデルにおける
パイプ応力σ_{pl}を求める。要素分割図を図2に示す。解析モデルは定
直矢径対称要素とし、対称性を考慮して全体の1/2として計算を行った。
切欠き荷重の最小要素は1辺を0.05mmとした。載荷条件は実験と
同じ変位制御し、各載荷点に同条件で強制制御を与えた。このよう
に実験より得られた破壊荷重まで数値解析を行い、破壊荷重時の応
力分布を元に、σ_{cr}、σ_{pl}を求めた。要素の応力ひずみ関係は-196℃
で行った素材試験結果を用いた。素材試験結果を表5に、応力ひ
ずみ関係を図3に示す。同図に示すように近似して解析に用いた。V
材は点検化開始直後に破断したために、引張強さまでの応力ひず
み曲線があり得ていないが、解析の際に円周切欠き付丸棒の破壊荷重
時に対応するひずみまで到達していないことを確認している。また、
ヤング係数はE=206×10^5(N/mm^2)、ポアソン比ν=0.3とした。

4.2 ローカルクライテリアに基づく評価方法
破壊限界応力σ_{cr}は、試験片破断時の、切欠き延長線上における切
欠き垂直方向応力σ_{cr}が最大となる要素の値を用いた。パイプ応力σ_{pl}を求めるためには、式(2)
の場合の体積積分を行う必要があるが、計算上は次の式のように取り扱った。

\[\sigma_{pl} = \sum_{j} V_j \sigma_{pl,m}^{\text{m}} / V_0 \] \((3) \)

\(V_j \)：i番目の要素の体積
\(\sigma_{pl,m} \)：i番目の要素の最大主応力
\(V_0 \)：単位体積

\(V_0 \)は冶金的因子により材料間で変化することが予想されるが、ここ
では既往の研究と同様に0.032mm²とした。また、積分範囲は
要素全体のうち、降伏域のみとした。式(3)を用いて、試験片破断

表4 円周切欠き付丸棒引張試験結果

<table>
<thead>
<tr>
<th>試験片名</th>
<th>最大荷重 (kN)</th>
<th>破断変位 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>272.2</td>
<td>0.044</td>
</tr>
<tr>
<td>B</td>
<td>32.6</td>
<td>0.047</td>
</tr>
<tr>
<td>C</td>
<td>29.8</td>
<td>0.047</td>
</tr>
<tr>
<td>D</td>
<td>31.7</td>
<td>0.051</td>
</tr>
<tr>
<td>E</td>
<td>31.2</td>
<td>0.054</td>
</tr>
<tr>
<td>F</td>
<td>31.0</td>
<td>0.047</td>
</tr>
<tr>
<td>G</td>
<td>29.9</td>
<td>0.042</td>
</tr>
<tr>
<td>H</td>
<td>31.9</td>
<td>0.046</td>
</tr>
<tr>
<td>I</td>
<td>33.0</td>
<td>0.042</td>
</tr>
<tr>
<td>K</td>
<td>30.6</td>
<td>0.051</td>
</tr>
<tr>
<td>L</td>
<td>34.6</td>
<td>0.054</td>
</tr>
<tr>
<td>M</td>
<td>32.6</td>
<td>0.057</td>
</tr>
<tr>
<td>N</td>
<td>33.5</td>
<td>0.065</td>
</tr>
<tr>
<td>O</td>
<td>29.8</td>
<td>0.051</td>
</tr>
<tr>
<td>P</td>
<td>33.6</td>
<td>0.057</td>
</tr>
<tr>
<td>V</td>
<td>35.7</td>
<td>0.071</td>
</tr>
<tr>
<td>R</td>
<td>32.5</td>
<td>0.046</td>
</tr>
</tbody>
</table>

図2 要素分割図（軸対称モデル）

表5 素材試験結果(-196℃)

<table>
<thead>
<tr>
<th>試験片名</th>
<th>降伏応力 (N/mm²)</th>
<th>最大応力 (N/mm²)</th>
<th>弾性比</th>
<th>破断比</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>350.1</td>
<td>395.6</td>
<td>0.80</td>
<td>44.2</td>
</tr>
<tr>
<td>B</td>
<td>384.6</td>
<td>434.8</td>
<td>0.89</td>
<td>43.8</td>
</tr>
<tr>
<td>C</td>
<td>394.5</td>
<td>454.7</td>
<td>0.89</td>
<td>42.8</td>
</tr>
<tr>
<td>D</td>
<td>410.7</td>
<td>495.7</td>
<td>0.92</td>
<td>36.6</td>
</tr>
<tr>
<td>E</td>
<td>410.7</td>
<td>495.7</td>
<td>0.92</td>
<td>36.6</td>
</tr>
<tr>
<td>F</td>
<td>421.1</td>
<td>506.1</td>
<td>0.95</td>
<td>37.3</td>
</tr>
<tr>
<td>G</td>
<td>430.6</td>
<td>506.1</td>
<td>0.95</td>
<td>37.3</td>
</tr>
<tr>
<td>H</td>
<td>430.6</td>
<td>506.1</td>
<td>0.95</td>
<td>37.3</td>
</tr>
<tr>
<td>I</td>
<td>440.7</td>
<td>535.6</td>
<td>0.98</td>
<td>37.3</td>
</tr>
<tr>
<td>J</td>
<td>450.8</td>
<td>555.6</td>
<td>0.98</td>
<td>37.3</td>
</tr>
<tr>
<td>K</td>
<td>460.9</td>
<td>575.6</td>
<td>1.00</td>
<td>37.3</td>
</tr>
<tr>
<td>L</td>
<td>470.0</td>
<td>595.6</td>
<td>1.01</td>
<td>37.3</td>
</tr>
<tr>
<td>M</td>
<td>480.1</td>
<td>615.6</td>
<td>1.02</td>
<td>37.3</td>
</tr>
<tr>
<td>N</td>
<td>490.2</td>
<td>635.6</td>
<td>1.03</td>
<td>37.3</td>
</tr>
<tr>
<td>O</td>
<td>500.3</td>
<td>655.6</td>
<td>1.04</td>
<td>37.3</td>
</tr>
<tr>
<td>P</td>
<td>510.4</td>
<td>675.6</td>
<td>1.05</td>
<td>37.3</td>
</tr>
<tr>
<td>V</td>
<td>520.5</td>
<td>695.6</td>
<td>1.06</td>
<td>37.3</td>
</tr>
</tbody>
</table>

図3 応力ひずみ関係（-196℃）
時のσwをそれぞれ算出した。ワイヤル形状係数 m については、各
親括荷重について求められるσwの値がワイヤル分布に従うと仮定し
ているので、m を変化させてσwを算出し、その平均と標準偏差が仮
定した m と最も近くなるワイヤル分布となるように m を求めた。A
と R 材は試験片数が少ないので、これでは処女材の値（m=32.8）
を用いて、各試験片のσwを求めた。塑性履歴を受けた材の m、σwに
については今後の課題とする。

4.3 解析結果
実験と解析の荷重−変位関係の一例として処女材における荷重−
変位関係を図 4 に示す。実験値が多少ばらついているが、実験値と
解析値が概ね一致していることがわかる。

繰返し塑性履歴による影響は、既報 3に基づき図点曲げ試験におけ
る円周変曲付丸棒試験片採取位置での荷重−歪曲線に関して、図 5
に示すような第 1 ループにおける初期曲げ方向と反方向のパワ
ガーナーを除いた N スケートン解析法を用いて評価した。N スケ
ートン歪を表 6 に示す。N スケートン歪の絶対値が大きな値を N スケ
ートン最大歪とし、圧縮側の試験片では最終履歴が圧縮となるのでマ
イナスの値が、引張側の試験片では最終履歴が引張となるのでプラス
の値が N スケートン最大歪となった。図 8 に、解析結果としてσwと
σwを示す。σwおよびσwと、N スケートン最大歪との関係を図 6 およ
び図 7 にそれぞれ示す。図中の実線は引張側の、破線は圧縮側の回
帰直線であり、r は相関係数である。σw、σwとも N スケートン最大
大歪が引張側の時は処女材よりも大きな値を取り、圧縮側の時は少
ない値を取る傾向が見られた。

また、圧縮側、引張側のどちらの試験片とも N スケートン最大歪
が大きくなるにつれてσw、σwの値がやや大きくなる傾向が見られた
が、処女材を最大でも 10%程度であった。N スケートン最大歪
の増大に伴う降伏応力の上昇に比べると一定値をとるほどはわずか
なるものと言える。つまりσwは塑性履歴に対してほとんど依存し
ないと考えて差し支えないと考えられる。

この影響を見るためにσwの降伏応力に対する比で比较検討する。
引張側は降伏応力をそのまま用いられるが、圧縮側は降伏曲面の移動によ
り応力ひずみ関係がラウンドハウス型となり、オフセット耐力で
見ると降伏応力が見かけ上低下していることが考えられる。そこで同
一塑性履歴を受けていた圧縮側と引張側の平均を用いて、降伏曲面の
移動を相殺し、降伏曲面の大きさとして扱った。以上をまとめると次
式で表現できる。

\[\sigma = \left| \sigma_{0} - \sigma_{w} \right|/2 \quad (4)\]

\[\sigma_{w} = \sigma_{w} + \sigma_{w} \quad (5)\]

\[\sigma_{w} : \text{常温降伏応力（圧縮側)}\]

\[\sigma_{w} : \text{常温降伏応力（引張側)}\]

\[\sigma_{w} : \text{σwの大きさに対する比とNスケートン最大歪の関係を図8に示す。図中の直線は塑性履歴を受けた試験片すべてによる回帰直線であら}

\[\sigma_{w} \text{で見ると上下2つに分かれていたが、} \sigma_{w} \text{に向かう圧縮側も引張側も同様の傾向を示し、Nスケートン最大歪が大きくなるに}

--- 154 ---
つれて低下していることが分かる。これは塑性履歴によりσ_pが多少大きくなるが、塑性履歴による降伏曲面の拡大に比べるとわずかなものであり、比で見ると低下していると言える。塑性履歴の増大によりべき関破壊限界に対する余裕が小さくなることを意味しており、材質劣化の一つの要因であると思われる。

4.4 破壊力学パラメータに及ぼす影響

塑性履歴を受けた鋼材を想定し、また繊維破壊を起こして限界CTOD値（δ_c）を考慮した場合、温度が-120℃の場合を対象として応力ひずみ曲線である。比較のために-60℃と常温（20℃）についても検討した。常温以外の応力ひずみ曲線は、-196℃と常温の素材試験結果より下式に示すひずみ速度と温度パラメータRを(Strain rate-Temperature parameter)の関数として求めたとする。

$$R = T \cdot \ln \left(\frac{A}{\varepsilon} \right)$$

(7)

T : 温度(K), $A = 10^9$(1/s), ε : ひずみ速度(1/s)

$$\sigma_y = B \cdot \exp \left(\frac{C}{R} \right)$$

(8)

B.C材料定数

ここでは、静的載荷なのでσ_yは定数となり、(8)式は温度 T のみの関数となる。処女材の真応力一真ひずみ曲線を真ひずみ座標軸方向に、予歪を含む分だけシフトさせると予歪材の真応力一真ひずみ曲線と等価することが分かっているので、各温度ごとの真応力一真ひずみ曲線を求める。図 11 に示すような応力ひずみ関係を用いた。以上よりσ_y、塑性履歴および温度に対して依存性が低いことを考慮し、塑性履歴、温度に関係なくσ_yは一定であると仮定して解析結果より破壊特性を試験片でσ_yの値に等しくした時に破壊が発生すると仮定し、その時のδ_cを算出した。図 12 に$\sigma - \varepsilon$関係を、図 13 に$\delta - \varepsilon$関係をそれぞれ示す。どの温度においてもスケルト
解析結果の δ_0 よりも幾分大きくなった。本解析においては延性破壊の要因を一切考慮していないために値が異なることが考えられるが、スクールトンが増大するに従い δ_0 が低下する傾向は同じであると言える。

5. まとめ
塑性破壊を受けた鋼材の脆性破壊についてローカルサイクリック・フレームに及ぼす影響を検討した。以下のようまとめる。
1) 橫経向塑性破壊を受けた SM490A 鋼材の破壊限界応力 σ_w、ウィルソン応力 σ_w は N スケルトン最大歪の増大に伴い向上する傾向があるが、応力材に比べ最大でも 10%程度であるため塑性破壊にはほとんど依存しないと見なすことができる。
2) 降伏曲面の大きさを δ とすれば $\delta/2$ は N スケルトン最大歪の増大に対して低下していることが分かる。すなわち塑性破壊による歪の拡大と比較すれば変化は小さく、δ_0 はほぼ一定と見なしても良い。
3) δ_0 が一定であるとして検討した結果、スクールトン歪が大きくなるにつれて限界 CTOD (δ_0) が低下するため材質劣化の傾向を示し、材質劣化の傾向は塑性破壊により応力ひずみ関係が変化することが影響していると考えられる。

参考文献
1) 中込忠男、青木博文：“塑性歪を受けた構造用鋼材の力学的性能に関する実験的研究”，構造学会論文集，Vol.38B，pp.369-376, 1992 3
2) 中込忠男、山内文男、高橋善男：“横経向塑性歪を受けた SM490A 鋼材の材質劣化に関する実験的研究”，日本建築学会構造論文集，No.469, pp.87-94, 1996 11
6) 宮田恒志、大塚昭夫、三林雅彦、土師敏夫、原川正二，“Local Fracture Criterion による破壊伝導の予測”，材料，Vol.37, No.419, pp.897-903, 1988 8
7) 宮田恒志、大塚昭夫、大竹敬志、賀部義央：“耐久性破壊伝導性の向上と破壊伝導性の相互関係”，材料，Vol.39, pp.446, pp.1549-1555, 1990 11
8) 田所昭範、宮田恒志、大塚昭夫：“屈折破壊伝導性応力条件と破壊伝導性”，材料，Vol.41, No.467, pp.1227-1233, 1992 10
9) 中込忠男、見渡隆、新井聡、大塚昭夫、三林雅彦、土師敏夫，“構造用鋼材の破壊伝導に関する実験的研究”，日本建築学会構造論文集，No.486, pp.125-132, 1996 8
10) 中込忠男、見渡隆、新井聡、大塚昭夫、三林雅彦，“構造用鋼材の破壊伝導に関する実験的研究”，鋼構造学会論文集，No.6, pp.47-54, 1996 11
12) 見渡隆、小野義司：“鋼材の応力伝導性に関する多軸応力、温度伝導性、温度伝導性の影響”，構造学会論文集，Vol.40B, pp.391-396, 1999 3
13) 日本建築学会構造教育委員会 AIP 委員会：“動的接続設計に際する鋼構造物での塑性破壊に関する評価手法”，建築学会論文集，第 13 回耐震構造用鋼材に関する研究発表会，pp.110-116, 1999 12

(2000年3月10日原稿受理、2000年5月22日採用決定)