The authors' answers to discussion by Prof. K. Takiguchi are as follows,

1) The values are calculated correctly. But expression of some sentences is opposite.
2) The value of Q_{exp}/Q_{ca} of 0.95 to 1.53 and average value is 1.18 when the axial force ratio is 0 ~ 0.3. The value of Q_{exp}/Q_{ca} is 0.90 ~ 1.28 and average value is 1.28 when the axial force ratio is 0.3 ~ 0.5.
3) There are some difference between the calculated value and experimental value by a assumption. It's important considering the difference in structural design.

Keywords: reinforced concrete column, half-precast, centrifugal casting, discussion, calculated value, experimental value

1.はじめに
遠心成形ハーフプレキャスト型状の鉄筋長度に関する論文13（以下、論文と呼ぶ）に対して、丁寧なご意見をいただきましてありがとうございます。ご質問について検討した結果を以下に述べさせていただきます。

2.結論の記述について
「実験値を計算値で除した強度比の値は全体ではおよそ0.9〜1.4の範囲にあり、平均値は1.15であった」との記述と「誘導された方程式は、実験値に較べて…1〜2割程度大評価する」との記述は、逆の意味ではないかとのご指摘については、ご指摘の通りです。前述の記述は、実験値と論文で誘導されている方程式による計算値から求めた実験値/計算値の値について示したものですので、検討結果として適切であると考えます。しかし、後者の記述は、設計の参考にするため、対象とする柱の長さを当方程式を用いて推定する場合、実際の長さのどの程度の余裕があるのかを示そうとしたものですが、表現が不適切でした。「大きく評価する」を「小さく評価する」に訂正します。このような表現は、5.結論の他、4.2実験値と計算値との強度比Q_{exp}/Q_{ca}の各要因の関係、3.精度の検証結果の文章中にありますので、読者の方にはお詫びをするとともに訂正をお願いをします。

3.軸力比の影響について
n=0.3, 0.3~0.95の範囲に分けた、というには特別な意味はありません。また、Q_{exp}/Q_{ca}の値は、軸力比が0〜0.3の範囲では0.92〜1.53で平均値は1.18、0.3〜0.5の範囲では0.90〜1.28で平均値は1.06です。この値を基に1〜2割程度および同程度という記述をしました。

次に、軸力比が零で計算値が式(15)で求められた資料の取り扱い方が不明とのご指摘についてですが、軸力比が零でも式(15)が該当するかのご指摘かと思われます。これについては、圧縮力が零でも式(15)が該当する場合があります。該当する3体の試験体は、特に主筋の降伏強度が大きく、式(15)に対する圧縮力の下限値を表す特定点nの値が負になっています。これら3体の試験体について、圧縮力が零とせん断力の関係を図-20に示します。これらの結果と図の図-20関係、傾斜が特定点でQ_{exp}が計算値を表し、トラス構造、アーチ構造、中段筋によるN-Q関係も併記しています。また、既報12)で提案した圧縮と曲げを受ける場合の終局強度の強度比式によるN-Q関係を一点綫形、同じ評価式による補正係数を被視した全塑性モーメントによるN-Q関係を図-26で示しています。

4.計算値と実験値の差異について
まず、ご指摘の論文の表-2と図-9は異なることがあるかどうかについてですが、同じデータを使用しており異なることはありません。ところが、筆者等の不注意で、図-9の作成に圧縮の値を小さく設定したことにより、試験体3体分の情報が示されておりませんでした。図-10に示した3体分です。図-9に示した3体分で、実験値Q_{exp}と計算値Q_{ca}の関係を図-26に示します。このことにより、実験値は3.7〜211tfの範囲になります。

さて、圧縮曲げせん断を受ける鉄筋コンクリート柱で、曲げ系の

—193—

Kimiya HAMADA, Yasunao NAKANISHI and Koichi MINAMI

THE AUTHORS' ANSWERS TO THE DISCUSSION BY PROF. KATSUKI TAKIGUCHI

浜田公也*, 中西靖直**, 南 宏一***
破壊を示すものに関しては、ストレスプロックや平面保持の変位を用いて計算した値と実験値とは、差が生じる場合があることに対し、筆者等の考えを述べられることで意見を述べます。

該論文で示した曲げ破壊を示す実験体の計算値は、ほぼ実験値を予測しております。その要因の一つとして、終局強度の評価式の選択が考えられます。該論文で提案した圧縮・曲げ・せん断を受ける場合の終局強度の評価式と既報で提案した圧縮と曲げを受ける場合の終局強度の評価式では、N−Q相互作用曲線で比較した場合、微細差はありますが、式(15)近辺ではあまり差はなく、式(18)～式(14)近辺では前者に較べ戻りが大きくなくなる傾向があります（該論文の図－6、図－7参照）。該論文では前者で終局強度を評価しており、後に較べ評価するときは、若干小さめに評価されていることが考えられます。

一方、一体打ち鉄筋コンクリート柱については、阿部らは、平面保持の変位を用いて求めた曲げ終局耐力に較べて、実験値は大きくなれる傾向を示し、圧縮がある程度進んでいる断面の曲げ終局耐力は、フェイス位置より上部の断面位置での曲げ応力とすべきであると指摘し、討論者らも同様に、圧縮・曲げ・せん断を受ける場合の危険断面の圧縮一方は、ストレスプロックを仮定して計算する際に、応力円の割を考慮する必要があることを言及しています。また、渡辺らは、超強度コンクリート柱について、ストレスプロックを用いると、柱曲げ強度のほぼ実験値を予測できるが、コンクリート強度が小さくなるのは、また幅力が大きくなると実験値を過少評価することを報告しています。この場合、拘束コンクリートによる圧縮強度の増加であると説明が難しいと報告されています。

このように、平面保持やストレスプロックを仮定して求められた曲げ強度は実験値を過少評価する場合がありますが、その原因は明確になっていないのが現状であると考えます。該論文で対象としている強度の異なるコンクリートで構成された柱についても、同様の傾向が認められるものもあり、終局強度の評価に中央部分で崩らんだ形のアーチ機構が導入することも考えられます。定量化するまでは至っておりません。筆者等は、終局強度を小さめではなく適切に評価することが望ましいと考えています。しかしながら、現状では計算値と実験値で差が生じることはやむを得ず、その差の程度を考慮して設計に利用することも重要なであると考えます。

参考文献
1) 日本建築学会，中西基重，南宏一：圧縮・曲げ・せん断を受ける偏心成形ヘアフーププレキャスト角型管を用いた鉄筋コンクリート柱の終局強度、日本建築学会構造系論文集、第532号、pp.127-136、2000.6
2) 野田光男，中西基重，南宏一：偏心成形ヘアフーププレキャスト角型管を用いた鉄筋コンクリート柱の終局強度、日本建築学会構造系論文集、第511号、pp.123-132、1998.8
3) 阿部浩一：偏心圧縮における鉄筋コンクリート柱の柱端圧縮の実験設計の提案、コンクリート工学論文、Vol.23、No.9、pp.107-117、Sept.1983
5) 朝倉克己，森田善平・偏心圧縮を受けたRC柱端部における圧縮試験、日本建築学会構造系論文集、第464号、pp.108-118、1994.10
6) 長谷川克己，宮崎新一，浜口正治：偏心圧縮を受けたRC柱端部圧縮試験、日本建築学会構造系論文集、第478号、pp.143-151、1995.12
7) 長谷川克己，今井和正，検測者：圧縮とせん断を受けたRC柱端部圧縮試験、日本建築学会構造系論文集、第494号、pp.83-90，1997.6
8) 辻田史夫，西山俊雄，六甲：偏心圧縮を受けたRC柱の圧縮強度と経時変化、日本建築学会構造系論文報告集、第468号、pp.99-106、1993.4
9) 佐藤政之，南宏一：鉄筋コンクリート柱のせん断破壊防止法に関する実験的研究、京都大学水理研究所年報、第22号1、pp.205-216、昭和44。