外空PCaを用いた鉄筋コンクリート柱の構造特性と最大耐力

STRUCTURAL CHARACTERISTICS AND MAXIMUM STRENGTH OF REINFORCED CONCRETE COLUMNS USING PRECAST CONCRETE SHELL

細矢博*, 浅野芳伸**, 小河義郎**, 今井弘***

Hiroshi HOSOYA, Yoshinobu ASANO, Yoshio OGAWA and Hiroshi IMAI

To facilitate construction of buildings, a precast concrete shell-form method applied to columns has been developed. The precast concrete shell is constructed by ordinary cast-in-place concrete, or is molded by centrifugal force. However, there is not much data regarding the structural characteristics of columns using the two types of precast concrete shell (hereafter referred to as PCa column). To investigate this, horizontal cyclic loading tests of PCa columns were carried out for structural characteristics and compared to conventional RC columns. Moreover, accuracy of calculated value of maximum strength of PCa columns by conventional method was investigated. It was confirmed that the structural characteristics of the two types of PCa columns were equivalent to that of the RC columns, and the maximum strength of PCa columns could be calculated correctly regardless of precast concrete shell type.

Keywords: Reinforced concrete column, Precast concrete shell, Horizontal loading test, Structural characteristics, Maximum strength

1. はじめに

鉄筋コンクリート造物の耐震性や工事効率を目的として、種々のプレキャストコンクリート工法が開発されている。その工法の一つとして薄肉中空断面プレキャストコンクリート（以下、外空PCaと記す）を柱部構造体として柱に用いる工法がある。

外空PCaは、製作場所から製作現場に搬入、単体で装着された柱状筋が製作された後、中央部に後打ち（中絞め）コンクリートが打設されて柱部材として一体化される。この外空PCaは、大別すると、PCa工法で遠心成形により製作する場合の、PCa工法または製作サイトで通常のコンクリートの流し込み成形により製作される場合の2種類に分けられる。既往の研究では、異なる製作法の外空PCaごとに、その外空PCaを用いた柱部材の構造特性について報告されている場合が多いが、製作方法が異なるため2種の外空PCaでは性状に差があり、それらを用いた柱部材の構造性能も自ずから異なるのではないかとの指摘がある。また、これら2種類の柱の最大耐力の評価に関して十分な資料が得られているとは言い難い。

そこで、遠心成形ならびに流し込み成形により外空PCaをそれぞれ製作し、これらを用いた柱の耐震性能試験を行い構造特性を比較検討するとともに、設計時に用いられることが多い算出方法で得られた最大耐力の精度について検証した。

2. 実験概要

2.1 試験体

本実験は、30階建て程度の鉄筋コンクリート(RC)造物の柱を対象としている。試験体の諸元を表1に、形状-寸法および配筋例を図1に示す。試験体は、シリーズ1およびシリーズ2から構成される。シリーズ1の試験体は、遠心成形により製作された外空PCaを用いたRC柱4体(PC1-A, PC1-B, PC-2, PC-3)と、比較検討用に製作された在来一体打ちRC柱3体(RC1-A, RC-2, RC-3)である。また、シリーズ2の試験体は、流し込み成形により製作された外空PCaを用いたRC柱6体(No.1-1, No.1-2, No.2, No.5, No.6, No.7)と比較検討用に製作された在来一体打ちRC柱1体(No.8)である。このうち、PC1-AとRC1-A, PC-2とRC-2, No.1-1, No.1-2, No.5, No.6を曲げ破壊型に計画し、PC1-B, PC-3とRC-3, No.2, No.7とNo.8をせん断破壊型に計画した。試験体の縮小率は1/3～1/3.4である。

用いた外空PCaは、中空筋を含む筋板をあらかじめ内蔵するタイプであり、したがって、全柱試験体とも中空筋を有している。

外空PCa柱と後打ちコンクリートを一体化するため外空PCaの内側表面に設けた凹凸状のシアコッターは、図1に示すように、シリーズ1では外空PCa内側の4分の1の部分に設けられ、その平面形状は矩形型で、シアコッター面積比(km)は0.25である。なお、シ
リーズ1の外枠PCは逆心成形で製造されているため、水平断面としては内側表面の中央部分を円弧状である。この表面は逆心成形直後後にレイタンス処理されるので、粗骨材が露出する。一方、シリーズ2では、シアークッションは外枠PCの内側表面全体に設けられ、その平滑形状は短冊型で、シアークッション面積比k_mは0.39である。以後、外枠PCを用いたRC柱を外枠PC柱、在来工法による一体打ちのRC柱をRC柱と記述する。

なお、シリーズ1およびシリーズ2では、付着破壊型についても載荷実験を行ったが、その付着特性については文献1）に報告しているので、本論では報告対象から除外した。

2.2 試験体の材料および製作方法

外枠PCのコンクリートの設計基準強度（F_m）は、下層階の柱を対象とする場合は60または75N/mm²、上層階の柱を対象とする場合は45N/mm²に設定した。外枠PCの中空部に中詰め材後打ちコンクリートのcは、下層階の柱では45N/mm²、上層階の柱では30N/mm²に設定した。外枠PC、後打ちコンクリートともに用いたセメントは普通ポルトランドセメントであり、粗骨材は最大寸法15mmの砕石である。逆心成形外枠PCは、スラング約180mmのコンクリートを逆心成形した後、高圧蒸気養生を施したもの。流し込み成形外枠PCは、スランプフロー約600mmの高流動コンクリートを模打し製作した。また、柱試験区間部分については、下段スタビ外枠PC柱

<table>
<thead>
<tr>
<th>表-1 試験体諸元</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験体</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>視</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

ここで、軸力比：$N/N_D=0.85$、N_D軸力、N_D軸力で打ちコンクリート強度比、N_D軸力で抜きコンクリート強度比、N_D軸力で抜きコンクリート強度比に留意することを説明する。なお、シリーズ2の外枠PC柱を境として、外枠PC柱を境としたコンクリート強度比を示す。
変位制御により逆対称変形が生じるよう水平力を載荷した。このとき、各載荷ステップにおける層間変形角のピークを、PC-1A、RC-1A、No.5ではR=±(2.5, 5, 10, 15, 20, 30, 40, 50, 60)×10^-3 radに、No.1-1、No.1-2ではR=±(2.5, 5, 10, 15, 20, 30, 40, 50)×10^-3 radに、PC-2、RC-2、PC-3、RC-3、PC-1B、No.2、No.6～No.8ではR=±(2.5, 5, 10, 15, 20, 30, 40)×10^-3 radに設定し、各ステップとも2サイクルずつの正負交互繰返し載荷を行った後に、正方向に単調載荷した。

動載荷力については、下層部の中柱を対象としたPC-1A、RC-1A、PC-3、RC-3、PC-1B、No.5、No.7、No.8では、軸力比(η)にして0.3相当の一定軸力を載荷した。また、上層部の中柱を対象としたNo.1-1、No.1-2、No.2では、η=0.15相当の一定軸力を載荷した。一方、下層部の外柱を対象としたPC-2、RC-2、No.6では、η=0.7～0.6の変動軸力を載荷した。このとき、予め長期軸力(Nt)に相当する軸力を載荷した後、Nt-Ng+N Nt+Ng (Nt:軸力、Ng:動載荷力)の間は柱せん断力Qに比例する軸力を載荷し、N=Nt+NgまたはNt=Ng+Ngに達した後は、これを一定に保持させた。

3. 実験結果
3.1 ひび割れおよび破壊現状
遠心成形外殻PCa柱、流し込み成形外殻PCa柱ならびにRC柱の最終破壊状況例を写真-1に示す。曲げ破壊型に計画した試験体では、最大耐力に至るまでに柱主筋が降伏し、部材端部に降伏ヒンジが生じ、全ての試験体が曲げ破壊した。せん断破壊型に計画した試験体では、最大耐力に至るまでに帯筋が降伏し、対角線上にひび割れが進展拡幅し、柱中央部が損傷を受けて、全ての試験体がせん断破壊した。ひび割れの進展状況について遠心成形外殻PCa柱、流し込み成形外殻PCa柱、RC柱を相互に比較すると、工法種別の違いによらず進展状況に大きな違いはみられなかった。一方、試験体の水平変形が増大すると、RC柱では外殻PCa柱に比べてコンクリートが厚いため、コンクリートの剥離が顕著となり、変位に示すように外殻PCa柱とRC柱とは破壊の様相が幾分異なっているよう見えた。しかしながら、コアコンクリートの損傷程度を目視により比較すると、両試験体に有意な違いは認められなかった。さらに、いずれの外殻PCa柱においても、シアコッターのせん断破壊もしくは支圧破壊による外殻PCaと外板コンクリートとの打ち込み界面での損失は認められず、RC柱と同等の一体性を保持していた。これから、一定高軸力(η=0.3)や変動高軸力(η=0.7～0.6)を受ける場合でも、外殻PCa柱の破壊現状はRC柱の破壊現状と類似していると考えられる。

3.2 柱せん断力～層間変形角関係
柱せん断力～層間変形角(Q-R)曲線を図-2に示す。Q-R曲線の包絡線を図-3に示す。また、初期剛性と限界変形角を表-3に示す。ここで、初期剛性については、Q-R曲線上の線形関係とみなされる領域でQ-R曲線を直線近似し、その直線の傾きから求めた。
図-2 柱せん断力-層間変形角線の比較

表-3 初期剛性および限界部材角

(注) PC-1A, RC-1AとNo.5, さらにPC-2, RC-2とNo.6では、それぞれ前の2体と後者の1体の柱間材寸法が異なりので、初期剛性については直接比較できない。
限界部材は、最大耐力の80％に荷重が低下した時点での層間変形角と定義した。さらに、η=0.3の一定軸力を受けて曲げ破壊したPC-1A、RC-1A。No.5、せん断破壊したPC-3、RC-3。No.7、No.8、およびη=0.7〜0.6の変動軸力を受けて曲げ破壊したPC-2、RC-2、No.6について、等価粘性減衰定数の比較を図-4に示す。
先ず、代表的な曲げ破壊型の試験体のQ-R曲線について述べる。
一定軸力（η=0.3）を載荷したPC-1A、RC-1A。No.5では、遠心成形外殻PCa柱、流し込み成形外殻PCa柱、RC柱にかかわらずQ-R曲線は線形でエネルギー吸収能力に富み、また、最大耐力以降の急激な耐力低下はみられず、変形能力に富んでいた。同様に、変動軸力（η=0.7〜0.6）を載荷したPC-2、RC-2。No.6でも、最大耐力以降の急激な耐力低下はみられず、高圧縮軸力下においても外殻PCa柱、RC柱にかかわらず軸性に富んでいた。
次に、外殻PCa柱とRC柱が対をなす試験体間のQ-R曲線を比較すると、シリーズ1とシリーズ2では試験体材床法が異なるために最大耐力に違いがあるものの、Q-R曲線の形状は類似し、その直線性は相違であった。また、Q-R曲線に示す通り、曲げ破壊したPC-1A、RC-1A。No.5では、各試験体の柱主筋降伏時変形角ならびに最大耐力変形角に大差なく、せん断破壊したPC-3とRC-3。No.7とNo.8では、対応する各試験体の帯筋降伏時変形角ならびに最大耐力変形角に大差なかった。変動軸力を載荷したPC-2、RC-2。No.6では、圧縮軸力下での最大耐力時変形角に違いがみられたものの、圧縮軸力ならびに引張軸力下での試験体主筋降伏時変形角に大差なかった。
一方、表-3に示す初期剛性のうち、PCa柱とRC柱が対をなし、かつ部材径が同じである試験体PC-1AとRC-1A、PC-2とRC-2、PC-3とRC-3。No.7とNo.8の初期剛性をそれぞれ比較すると、外殻PCa柱のRC柱に対する比は1.00〜1.09であり、いずれの場合も外殻PCa柱はRC柱に比べ剛性が大きいものの、差は10%を下まわり大差なかった。これより、曲げ及びせん断が最初に入り初期剛性に影響を与える柱脚打ち抜け部、外殻PCa柱、RC柱によらず後打ちコンクリートより成るため、両者の初期剛性にはほとんど差がなかったものと考えられる。他方、限界部材角についてみると、曲げ破壊型およびせん断破壊型において、遠心成形外殻PCa柱、流し込み成形外殻PCa柱にかかわらず、いずれの試験体でも変形の差はほとんどみられず、エネルギー吸収能力は等価であった。
以上から、遠心成形外殻PCa柱、流し込み成形外殻PCa柱、RC柱は、類似した復元力特性を示すといえる。
3.3 材軸方向ひずみ度および材料破壊転移
外殻PCa柱とRC柱が対をなす試験体間の材軸方向平均ひずみ度と材端部転角の比較を図-5に示す。ここで、材軸方向の平均ひずみ度を材料の破壊転移を示す。
ずみ度は、部材全長にわたる材軸方向変位を初期の柱内法高さで除して求めた。また、材軸部材軸沖角は、スタップ約150mm（0.47D～
0.54D、D：柱径）離した位置で計測した材軸部材軸方向の変位を変
位計測用で除することにより求めた。

まず、材軸方向のひずみ度について述べると、曲げ破壊型のPC−
1A、RC−1A、No.5、およびPC−2、RC−2、No.6では、いずれも圧
壊が進むほどR=15×10^3radから、また、せん断破壊型のPC−3、
RC−3、およびNo.7、No.8では、せん断ひずみが拡大をしめの
R=20×10^3radで、外付PCa柱では圧壊に比べてひずみ度が
大きく推移した。これは、外付PCaの強度および剛性が後打ちコンクリートに比べて小さいことに、外付PCa柱では圧壊の外力面
が大きく、蔽幕に回され拘束効果の影響を受けるコンクリートの領
域が広くことによるものと考えられる。次に、降伏ヒンジが形成された
PC−1A、RC−1A、No.5およびPC−2、RC−2、No.6の材軸部材軸沖
角について比較すると、圧壊が進んだR=30×10^3radまでPC−1A、
RC−1A、No.5では幾分進がられたものの、腐食全体としては大差
なかった。

以下から、軸方向変位については外付PCa柱は圧壊に比べて小さ
く、材軸部材軸沖変形形態については両者同様と考えられる。

4．最大耐力の評価

最大耐力の実験値ならびに計算値を表－4と図－4に示す。ここ
で、曲げ耐力の計算値については、外付PCa柱と後打ちコンクリートの
諸元（強度、剛性、断面積）を個別に考慮したファイバーモデル
による断面解析から求めた。また、せん断耐力の計算値については、
外付PCa柱では外付PCa柱と後打ちコンクリートは一体となってせん
断力に抗するため、結局、柱部材としてはコンクリート強度が平均
的に上昇したものと等価であると考え、構造設計において行う
手法、すなわち、次章(1)式に示す通り外付PCa柱と後打ちコンクリートの
強度と面積からの等価コンクリート強度を求め、これを用い
て既往のせん断耐力式より算出した。用いたせん断耐力式は、修正
荒川mean式(a)、終局強度型耐震設計指針A法式(b)、New RCCT式(c)
の順に編成した耐震設計指針式である。なお、修正荒川mean式、終局
強度型耐震設計指針A法式は、本来の適用範囲を超えるもの、本
論では、高強度領域に対しても適用できるものと仮定している。

最大耐力の計算値と実験値との比較においては、表－1に示す試
験体の他、文献7)～15)の試験体も対象とした（付録参照）。それら
全ての試験体は、蔽幕が外付PCaにあらかじめ内蔵され柱主筋が後
打ちコンクリートに埋設される形のものである。

<table>
<thead>
<tr>
<th>試験体名</th>
<th>種類</th>
<th>外付PCa 採用型</th>
<th>形式</th>
<th>計算値</th>
<th>実験値</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC−1A</td>
<td>C S</td>
<td>689</td>
<td>557</td>
<td>501</td>
<td>740</td>
</tr>
<tr>
<td>RC−1A</td>
<td>C S</td>
<td>573</td>
<td>533</td>
<td>490</td>
<td>731</td>
</tr>
<tr>
<td>PC−2</td>
<td>C P</td>
<td>585</td>
<td>467</td>
<td>521</td>
<td>573</td>
</tr>
<tr>
<td>RC−2</td>
<td>C P</td>
<td>498</td>
<td>429</td>
<td>508</td>
<td>584</td>
</tr>
<tr>
<td>No.1−1</td>
<td>C P</td>
<td>391</td>
<td>400</td>
<td>329</td>
<td>476</td>
</tr>
<tr>
<td>No.2−1</td>
<td>C P</td>
<td>406</td>
<td>399</td>
<td>364</td>
<td>597</td>
</tr>
<tr>
<td>No.5−1</td>
<td>C P</td>
<td>479</td>
<td>447</td>
<td>424</td>
<td>647</td>
</tr>
<tr>
<td>No.8−3</td>
<td>C P</td>
<td>544</td>
<td>377</td>
<td>490</td>
<td>571</td>
</tr>
<tr>
<td>PCM−3</td>
<td>C S</td>
<td>443</td>
<td>391</td>
<td>415</td>
<td>538</td>
</tr>
<tr>
<td>RCM−4</td>
<td>C S</td>
<td>437</td>
<td>389</td>
<td>413</td>
<td>537</td>
</tr>
<tr>
<td>E−17</td>
<td>C S</td>
<td>447</td>
<td>480</td>
<td>545</td>
<td>1051</td>
</tr>
<tr>
<td>E−18−5</td>
<td>C S</td>
<td>459</td>
<td>432</td>
<td>521</td>
<td>1061</td>
</tr>
<tr>
<td>CR−17−1</td>
<td>C S</td>
<td>1065</td>
<td>890</td>
<td>850</td>
<td>1160</td>
</tr>
<tr>
<td>CR−18−1</td>
<td>C S</td>
<td>500</td>
<td>513</td>
<td>543</td>
<td>702</td>
</tr>
<tr>
<td>No.5−9</td>
<td>C P</td>
<td>443</td>
<td>402</td>
<td>493</td>
<td>708</td>
</tr>
<tr>
<td>No.5−10</td>
<td>C P</td>
<td>511</td>
<td>477</td>
<td>560</td>
<td>798</td>
</tr>
<tr>
<td>No.5−11</td>
<td>C P</td>
<td>556</td>
<td>564</td>
<td>693</td>
<td>747</td>
</tr>
<tr>
<td>PC−3</td>
<td>C S</td>
<td>892</td>
<td>977</td>
<td>532</td>
<td>742</td>
</tr>
<tr>
<td>RC−3</td>
<td>C S</td>
<td>815</td>
<td>913</td>
<td>604</td>
<td>726</td>
</tr>
<tr>
<td>PC−1B</td>
<td>C S</td>
<td>807</td>
<td>761</td>
<td>575</td>
<td>735</td>
</tr>
<tr>
<td>No.2−2</td>
<td>C S</td>
<td>435</td>
<td>507</td>
<td>327</td>
<td>531</td>
</tr>
<tr>
<td>No.3−3</td>
<td>C S</td>
<td>638</td>
<td>871</td>
<td>478</td>
<td>501</td>
</tr>
<tr>
<td>No.8−3</td>
<td>C S</td>
<td>612</td>
<td>589</td>
<td>441</td>
<td>485</td>
</tr>
<tr>
<td>PC−2−1</td>
<td>C S</td>
<td>768</td>
<td>723</td>
<td>508</td>
<td>577</td>
</tr>
<tr>
<td>RC−2−1</td>
<td>C S</td>
<td>746</td>
<td>723</td>
<td>509</td>
<td>577</td>
</tr>
<tr>
<td>E−17−1</td>
<td>C S</td>
<td>843</td>
<td>779</td>
<td>691</td>
<td>741</td>
</tr>
<tr>
<td>E−18−1</td>
<td>C S</td>
<td>600</td>
<td>755</td>
<td>585</td>
<td>653</td>
</tr>
<tr>
<td>CR−17−1</td>
<td>C S</td>
<td>677</td>
<td>1015</td>
<td>624</td>
<td>555</td>
</tr>
<tr>
<td>CR−18−1</td>
<td>C S</td>
<td>1339</td>
<td>1255</td>
<td>1201</td>
<td>1274</td>
</tr>
<tr>
<td>CR−17−1</td>
<td>S P</td>
<td>1196</td>
<td>1255</td>
<td>501</td>
<td>804</td>
</tr>
<tr>
<td>CR−18−1</td>
<td>S P</td>
<td>586</td>
<td>701</td>
<td>587</td>
<td>696</td>
</tr>
<tr>
<td>AS−17−1</td>
<td>C S</td>
<td>459</td>
<td>488</td>
<td>347</td>
<td>292</td>
</tr>
<tr>
<td>AS−18−1</td>
<td>C S</td>
<td>531</td>
<td>578</td>
<td>415</td>
<td>478</td>
</tr>
<tr>
<td>AS−17−1</td>
<td>C S</td>
<td>634</td>
<td>737</td>
<td>533</td>
<td>684</td>
</tr>
<tr>
<td>AS−18−1</td>
<td>C S</td>
<td>696</td>
<td>798</td>
<td>586</td>
<td>663</td>
</tr>
<tr>
<td>AS−17−1</td>
<td>C S</td>
<td>622</td>
<td>721</td>
<td>515</td>
<td>691</td>
</tr>
<tr>
<td>AS−18−1</td>
<td>C S</td>
<td>623</td>
<td>707</td>
<td>501</td>
<td>564</td>
</tr>
<tr>
<td>AS−17−1</td>
<td>C S</td>
<td>811</td>
<td>732</td>
<td>668</td>
<td>802</td>
</tr>
<tr>
<td>AS−18−1</td>
<td>C S</td>
<td>883</td>
<td>961</td>
<td>801</td>
<td>973</td>
</tr>
<tr>
<td>AS−17−1</td>
<td>C S</td>
<td>565</td>
<td>712</td>
<td>538</td>
<td>674</td>
</tr>
<tr>
<td>AS−18−1</td>
<td>C S</td>
<td>589</td>
<td>682</td>
<td>521</td>
<td>665</td>
</tr>
<tr>
<td>AS−17−1</td>
<td>C S</td>
<td>683</td>
<td>841</td>
<td>647</td>
<td>867</td>
</tr>
<tr>
<td>AS−18−1</td>
<td>C S</td>
<td>775</td>
<td>882</td>
<td>734</td>
<td>717</td>
</tr>
</tbody>
</table>

表－4 最大耐力の実験値および計算値

(注)平均値、標準偏差、変動係数は縦掛けの部分を対象としている。
先ず、表-4に示す最大耐力の実験値について、外実PCa柱とRC柱を対照製作した曲げ破壊型のPC-1AとRC-1A，PC-3とRC-3，せん断破壊型のPC-3とRC-3，No.7とNo.8を比較すると、いずれの場合も外実PCa柱の最大耐力はRC柱と同等かそれ以上である。また、PCa柱とRC柱を対照製作した外実PCa柱と後打ちコンクリート柱のせん断破壊型の圧縮強度は、PCa柱と後打ちコンクリート柱の圧縮強度も確認できたが、圧縮成長外実PCa柱、流し込み成長外実PCa柱にかかわらず、外実PCa柱の最大耐力は、RC柱と同等もしくはそれ以上を期待できる。

次に、ファイバーモデルによる断面解析から得られた曲げ耐力の計算値と実験値との関係について述べると、計算値に対する実験値の比の平均値は1.09, 変動係数は0.07であり、計算値は最大耐力を精度よく評価した。また、大部分の試験体が0〜20％の領域にあり、計算値は曲げ耐力を安全側に評価することが確かめられた。そこで、試験体数が少ないものの、表-5から、圧縮成長外実PCa柱と流し込み成長外実PCa柱の計算値に対する実験値の比について個別に求めると、平均値はそれぞれ1.12と1.05で圧縮成長外実PCa柱の方が若干大きいものの、標準偏差、変動係数に違いはみられなかった。

一方、等価コンクリート強度を用いて既往の耐力式からせん断耐力を求めた場合について述べると、計算値に対する実験値の比の平均値は、修査荒川mean式では1.25, 定局強度型耐震設計指針A式では1.10, 新RC式では1.09, 副背保証型耐震設計指針式では1.16であった。このうち、新RC式では、計算値はほぼ±20％の領域に入り、標準偏差が0.13, 変動係数が0.13でばらつきが小さく、4式の中では精度が最も高いこと、修査荒川mean式では、最大耐力を安全側に評価し、かつ強度領域の試験体を含めても標準偏差が0.13, 変動係数が0.11であり、ばらつきが小さいことがわかった。

さらに、定局強度型耐震設計指針A式、副背保証型耐震設計指針式でも、標準偏差が1.15〜1.17, 変動係数が0.14〜0.16であり、十分な精度を有していた。また、表-4から、各せん断耐力式ごとに、圧縮成長外実PCa柱と流し込み成長外実PCa柱の計算値に対する実験値の比について個別に求めると、平均値はそれぞれ1.10〜1.26, 1.01〜1.15であり、圧縮成長外実PCa柱に対して流し込み成長外実PCa柱が小さいものの、標準偏差が0.11〜0.16, 0.12〜0.18, 変動係数が0.09〜0.15, 0.11〜0.18であり、精度上、外実PCa柱の種類の違いによる差はほとんどみられなかった。

以上から、圧縮成長外実PCa柱、流し込み成長外実PCa柱にかかわらず、従来用いられている算出方法を採ることにより曲げ耐力ならびにせん断耐力を十分な精度で評価できることが、また、各せん断耐力式において精度上の大きな差は存在しないことが確かめられた。

なお、本論で対象とした試験体の外実PCa柱と柱の関係、外実PCa柱と後打ちコンクリートの圧縮強度の関係、柱主筋と帯筋の降伏強度の関係は図-7に示す通りであり、軸力比(N/d0)の範囲は0.0〜0.78である。
5. まとめ
本研究の範囲で得られた知見を以下に示す。
(1) 遠心成形外殻PC柱と波み込成形外殻PC柱の構造特性は類似し、最大耐力は同等であった。
(2) 曲げ破壊型、せん断破壊型ともに、外殻PC柱とRC柱とはほぼ同じ耐力特性であった。
(3) 曲げ破壊型の外殻PC柱の変形性エネルギー吸収特性は、波み込成形に比べて高かった。
(4) 外殻PC柱とRC柱の初期剛性に差はないと、外殻PC柱の最大耐力は、曲げ破壊型、せん断破壊型ともに、RC柱の最大耐力を上回った。
(5) 外殻PC柱の曲げ耐力については、外殻PC柱と後打ちコンクリートの曲げ剛性を個別に考慮したファイバー-メモリ型による断面解析で精度良く評価できること。また、せん断耐力については、端部コンクリート強度を用いた場合、修正間隙、終局強度型耐震設計指針、ればRC柱、耐震基準型耐震設計指針いずれによっても、十分な精度で評価できることが確かめられた。

謝辞
本研究の一部は、機械屈組、洋建部組、桝木組、建設組、機械組の4社が共同で行ったものです。ご協力いただいた方に謝意を表します。また、本論文の作成にあたり、国土交通省国土技術政策総合研究所の倉本洋博士に有益な助言をいただきました。筑波水運証明実験については、日本建築学会総合研究所の星尾、橋本らならびに井上実也氏をはじめとする全員の方々にご指導、ご協力をいただきました。ここに記して謝意を表します。

参考文献
1) 野村・博・小河原義・向野政夫、立場変数・藤原善彦、著・富明: 波み込成形による外殻PC柱部材の研究
2) 東京大学大学院大学学術講演会、C−2、構造、2305. pp.107−108、2000.9
3) 土田・吉村: 庭園コンクリートのびりす盲に波み込性について - 実験研究による再検討 - コンクリートジャーナル、Vol.8、No.7、pp.11−20、1970.7
4) 村山・野村: 鉄筋コンクリート構造体の終局強度型耐震設計指針、同解、1990年
5) (財) 日本国土開発技術研究センター: 建築計画技術開発プロジェクト、鉄筋コンクリート構造体の軽量性、耐用年数化技術の開発、平成4年、構造性能分科会報告書、平成5年3月
6) 村山・野村: 鉄筋コンクリート構造体の耐震保全型耐震設計指針、同解、1999年
7) 中江英彦、浅野芳伸、早川邦夫、橋本・博: 薄壁中空断面プレキャスト工法の応用研究(その1)、日本建築学会大学学術講演会、pp.457−458、1995.9
8) 増田安佐、吉村研究、外殻PC薄壁プレキャスト管を用いた鉄筋コンクリートの耐力特性に関する研究、日本建築学会構造系論文報告集、No.458、pp.109−112、1994.4
9) 香田伸次、加藤、富山一、中村和生: 遠心成形外殻PC柱のせん断剛性に関する実験、日本建築学会大学学術講演会、構造、2140。pp.993−994、1992.8
10) 柳尾延弘、関・誠、た上村、倉山拓: 薄壁PCプレキャスト構造の開発、日本国際建築技術研究所報告、No.13、pp.9−17、1994.3
11) 岩田伸一、中西正道、引地利雄、薄壁PC構造を用いた複合化工法の研究(その13)、日本建築学会大学学術講演会、構造、2306。pp.121−122、1997.9
12) 増田安佐、吉村研究、田中隆: 高強度セメント製品を用いたハーププレキャスト柱の耐力特性に関する研究(その2)、日本建築学会大学学術講演会、構造、2307、pp.133−134、1997.9
13) 野口隆、吉村研究、福本隆: 高強度セメント製品を用いたハーププレキャスト柱の耐力特性に関する研究(その4)、日本建築学会大学学術講演会、構造、2319。pp.389−390、1998.9
14) 張・富明、佐藤武、甲斐茂、勝野博、山尾一雄、藤原善彦: 薄壁PCプレキャスト柱の耐力特性に関する研究(その11)、日本建築学会大学学術講演会、構造、2305。pp.113−114、2000.9
15) 織木・博、上西隆、浅野芳伸: 薄壁中空断面プレキャスト工法に関する研究(その4)、日本建築学会大学学術講演会、構造、2319。pp.385−386、1998.9

【付録】

| 位置 | 試験方法 | 部材尺寸 | 高さ | 外殻PC厚 | せん断破壊 | 外殻PC柱の構造形式 | 強度比
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>鋼筋PC柱</td>
<td>F</td>
<td>350</td>
<td>350</td>
<td>100</td>
<td>2−06 2825</td>
<td>1.96</td>
</tr>
<tr>
<td>2</td>
<td>鋼筋PC柱</td>
<td>F</td>
<td>350</td>
<td>350</td>
<td>100</td>
<td>2−06 2825</td>
<td>1.96</td>
</tr>
<tr>
<td>3</td>
<td>鋼筋PC柱</td>
<td>F</td>
<td>350</td>
<td>350</td>
<td>100</td>
<td>2−06 2825</td>
<td>1.96</td>
</tr>
<tr>
<td>4</td>
<td>鋼筋PC柱</td>
<td>F</td>
<td>350</td>
<td>350</td>
<td>100</td>
<td>2−06 2825</td>
<td>1.96</td>
</tr>
</tbody>
</table>

F: 曲げ破壊, S: せん断破壊, FS: 曲げせん断破壊, V: 通心成形, P: 流し込み成形

(2000年11月6日初版発行、2001年1月16日採用決定)